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Abstract

We describe a recently introduced single-step traveling-wave quantum state engineering scheme using
the one-dimensional coherent-state representation introduced by Janszky. In this representation, the
photon number expansion of the output state is derived in a compact formula that is advantageous
for numerical optimization. Using this formula, we determine several sets of physically controllable
parameters of the scheme yielding various nonclassical target states.
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1. Introduction

There exists a persistent interest on the generation of nonclassical states of light due to their essential

role in numerous applications in quantum optics and quantum information processing. The preparation

of nonclassical states in traveling optical modes is generally required for many practical applications. An

efficient method for this task is measurement-induced conditional preparation, where one of the modes

of a bipartite correlated state is measured, thereby projecting the state of the other mode to the desired

one. The majority of the conditional schemes is developed for the generation of a certain state. For

example, optical cat states and their squeezed versions have been successfully generated experimentally

in such protocols [1–6].

The aim of quantum state engineering is the generation of a variety of nonclassical states in the same

experimental scheme. A plausible approach for the engineering is the systematic construction of the

photon number expansion of the quantum states up to a given photon number. The methods developed

for this task are based on repeated photon additions [7], photon subtractions [8], and various combinations

of these [9, 10]. Another kind of engineering is based on the discrete coherent state superpositions

approximating the target states [11]. Such superpositions have been introduced and analyzed by Janszky

et al. [12–15].

The problem of the former approach is that the number of detection events and optical elements is

generally proportional to the amount of number states involved in the photon number expansion of the
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target state leading to a decrease in the success probability and even to that fidelity of the preparation

of states involving larger photon number components. The arrangements applying the latter approach

contain only a few elements and measurements, which partly overcomes this issue. However, they still

exhibit only a moderate success probability, owing to the application of multiple measurements.

Recently, a single-step quantum state engineering scheme has been proposed for the high-fidelity

conditional generation of a large variety of nonclassical states of traveling optical fields [16]. It contains

only a single measurement leading to high success probabilities. In this scheme, the physically controllable

parameters of the arrangement encode the generated state, and they can be determined by numerical

optimization.

In this paper, we develop the description of this single-step scheme using the one-dimensional coherent-

state representation introduced by Janszky [17]. One-dimensional coherent state representations are

defined on certain contours such as straight lines and circles in the phase space that is on the α plane [17–

23]. Such representations have been determined for several relevant nonclassical states including squeezed

coherent states [17,18], amplitude squeezed states [19,21], and squeezed displaced number states [22]. A

systematic method to obtain the straight-line coherent-state distribution function for a given state has

also been developed [20]. This representation is not unique due to the overcompleteness of the coherent

states [20, 23]. Due to its relative simplicity, it proved to be a useful mathematical tool for describing

nonclassical states and treating optical processes [24].

In the end, using the developed description for numerical optimization, we show that various classes of

nonclassical states can be generated with high fidelity and success probability in the considered scheme.

Our novel examples include amplitude squeezed states, special photon number superpositions, and optical

cat states.

This paper is organized as follows.

In Sec. 2, we present the considered single-step quantum state engineering method and derive the

output state by applying one-dimensional coherent state representations for the input states. In Sec. 3, we

present and discuss the results of the numerical optimization for a wide variety of target states. Finally,

we conclude in Sec. 4.

Fig. 1. Experimental scheme for generating a
wide variety of nonclassical states in traveling op-
tical field. The input squeezed coherent states
|ζi, αi〉 interfere on a beam splitter with transmit-
tance T .

2. Description of the Scheme in One-

Dimensional Representation

In [16], a single-step conditional quantum state engi-

neering scheme was presented with two alternative mea-

surements. In this paper, we analyze the version of that

scheme containing a single photon detector (SPD) using

one-dimensional coherent state representations.

The considered scheme is presented in Fig. 1. Two

squeezed coherent states |ζj , αj〉 with squeezing fac-

tors ζj = rj exp(iθj) and coherent amplitudes αj =

|αj | exp(iφj) (j = 1, 2) overlap with a beam splitter of

transmittance T . After the beam splitter a single photon

detection (SPD) is performed on one of the outputs to

herald the generation of the desired output state |ψout〉
on the other mode.
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Squeezed coherent states |ζ, α〉 can be derived from the vacuum state by the consecutive application

of the squeezing operator Ŝ(ζ) and the displacement operator D̂(α) as |ζ, α〉 = D̂(α)Ŝ(ζ)|0〉. These states
can be described by various straight-line superpositions. The simplest one is defined along a straight line

in the phase space crossing the coherent state appearing in the definition, and the direction of the line is

perpendicular to the direction of the squeezing. In this case, the one-dimensional representation of the

state reads as [18]

|ζ, α〉 = 1√
π

∫
g(x)|α+ γx〉 dx, (1)

where

g(x) =
1√

2 sinh(r)
exp

[
−1

2
(coth(r)− 1)x2 +

(
αγ∗ − α∗γ

2

)
x

]
, γ = exp

(
iθ

2

)
. (2)

This means that the squeezed coherent state is the Gaussian superposition of the coherent states along

the given line.

The advantage of the coherent state representation is that for coherent inputs the beam splitter

transformation for a beam splitter with transmittance T can be given in the following simple form:

|α〉1 ⊗ |β〉2 →
∣∣∣√Tα+

√
1− Tβ

〉
3
⊗

∣∣∣√1− Tα−
√
Tβ

〉
4
. (3)

Using the representation (1) of the input states and applying the formula 〈1 |α〉 = α exp(−|α|2/2), the
output state of the system after the measurement can be written as

|ψout〉SPD = NCSPD(α1, α2, T )

∫∫
gSPD(x, y)

∣∣∣√1− T (α1 + γ1x)−
√
T (α2 + γ2y)

〉
dx dy, (4)

where

gSPD(x, y) =
[√

1− T (α1 + γ1x) +
√
T (α2 + γ2y)

]
× exp

{
−1

2

[
(coth(r1)− 1 + T )x2 + (coth(r2)− T ) y2

+
(
T (α∗

1γ1 + α1γ
∗
1) +

√
T (1− T ) (α∗

2γ1 + α2γ
∗
1)
)
x

+
(
[1− T ] (α∗

2γ2 + α2γ
∗
2) +

√
T (1− T ) (α∗

1γ2 + α1γ
∗
2)
)
y

+
√
T (1− T ) (γ∗1γ2 + γ1γ

∗
2)xy

]}
(5)

and

CSPD(α1, α2, T ) =
1

2π
√
sinh(r1) sinh(r2)

× exp

{
−1

2

[
T |α1|2 + (1− T )|α2|2 +

√
T (1− T ) (α∗

1α2 + α1α
∗
2)

]}
. (6)

According to Eq. (4), the output state |ψout〉SPD is described by a special two-dimensional coherent state

representation defined on the phase space.
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Applying Eqs. (4)–(6) and the formula 〈n |α〉 = (αn/
√
n!) exp

[−|α|2/2], the photon number expan-

sion

|ψout〉SPD = N
∞∑
n=0

c(SPD)
n |n〉 (7)

can be easily derived. The coefficients read

c
(SPD)
n = C ′

SPD(α1, α2, T )

∫∫
[
√
1− T (α1 + γ1x) +

√
T (α2 + γ2y)]

×[
√
1− T (α1 + γ1x)−

√
T (α2 + γ2y)]

n

× exp

{
−1

2

[
(coth(r1)− 1 + T )x2 + (coth(r2)− T ) y2

+ 2T (α∗
1γ1 + α1γ

∗
1)x+ 2[1− T ] (α∗

2γ2 + α2γ
∗
2) y

]}
dx dy, (8)

where

C ′
SPD(α1, α2, T ) =

1

2π
√
sinh(r1) sinh(r2)n!

exp
{− [

T |α1|2 + (1− T )|α2|2
]}

. (9)

Even though these coefficients are defined through a two-dimensional integral, the derived formula is

much simpler than the one defined in [16] and can be efficiently used for numerical optimization.

3. Generation of Nonclassical States

In this section, we demonstrate through examples how the scheme can be applied to generate a large

variety of nonclassical states. Our examples include amplitude squeezed states, resource states, special

photon number state superpositions, and optical cat states. The latter states are not considered in [16].

Amplitude squeezed states are defined by Gaussian continuous coherent state superpositions on circles

in the phase space,

|α0, u, δ〉A = N
∫

exp

(
−1

2
u2φ2 − iδφ

) ∣∣∣α0e
iφ
〉
dφ, (10)

where N is a normalization constant, u determines the width of the distribution, α0 is the magnitude

of the amplitudes of the superposed coherent states, and δ is a free modulation constant. Amplitude

squeezed states contract into the coherent state |α0〉 in the limit u → ∞, while in the opposite limit

u � 1, an n-photon number state with n = δ is achieved. The state |α0, u, δ〉A can be expanded in the

photon number basis as

|α0, u, δ〉A = N
∞∑
n=0

√
2παn

0

u
√
n!

exp

[
−(δ − n)2

2u2

]
|n〉. (11)

These states are intelligent states of the Pegg–Barnett-number–phase uncertainty relation and also of an

alternative to this relation introduced as the number-operator–annihilation operator uncertainty relation

for a certain parameter range [19,25,26]. Hence, they can be used for testing various uncertainty relations

experimentally.
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We also consider the following superpositions of photon number states with ad hoc coefficients,

|ψ01〉 = 1√
2
(|0〉+ |1〉), |ψ12〉 = 1√

5
(2|1〉+ |2〉),

(12)
|ψ135〉 = N (|1〉+ 0.2|3〉+ 0.1|5〉, ) |ψ012〉 = N (2|0〉+ |1〉+ 0.5|2〉),

and the special superposition

∣∣ψ(ζ, χ′)
〉
R

= Ŝ(ζ)

(
|0〉+ χ′ 3

2
√
2
|1〉+ χ′

√
3

2
|3〉

)
(13)

referred to as resource states that can be used for realizing cubic nonlinear quantum gates essential for

universal continuous-variable quantum computation in the optical setting [27–29].

We will also consider optical even cat states defined as |α〉C = N (|α〉+ |−α〉). These states and their

odd versions form a basis for linear optical quantum computing [30,31].

The photon number expansion presented in Eqs. (8) and (9) contains nine adjustable parameters;

these are: the complex squeezing parameters ζj and the complex coherent signals αj of the input squeezed

coherent states, and the transmittance T of the beam splitter. In order to generate a given target state,

our task is to find the values of the variable parameters of the introduced scheme for which the misfit

ε = 1− |〈ψout |ψtarget 〉|2 between the target state |ψtarget〉 and the generated states |ψout〉 is minimal. We

used a genetic algorithm [32] to solve this optimization problem. We imposed bounds on the variables

so that their values are physically reasonable while the optimization problem is numerically stable and

Table 1. Results of the Optimization for Different Nonclassical States for the Scheme of Fig. 1.a

state ε r1 θ1 α1 φ1 r2 θ2 α2 φ2 T P

|1, 0.8, 1〉A 1.15 · 10−4 0.36 0.40 0.50 4.89 0.54 0.34 0.12 4.93 0.45 0.202∣∣√2, 2, 2
〉
A

4.07 · 10−3 0.61 3.16 1.49 4.94 0.34 2.14 0.63 5.08 0.27 0.364∣∣√2, 5, 2
〉
A

2.05 · 10−4 0.33 2.68 1.39 4.29 0.96 2.68 1.04 1.72 0.18 0.269

|2, 5, 4〉A 1.29 · 10−4 0.06 2.31 2.01 4.52 0.24 0.10 0.90 0.46 0.49 0.386

|Ψ(0.15, 0.05)〉R 3.80 · 10−4 0.25 5.53 0.50 3.92 0.27 5.68 0.55 2.53 0.55 0.293

|Ψ(0.1, 0.1)〉R 1.83 · 10−3 0.34 5.20 0.50 3.25 0.90 4.90 1.5 1.23 0.29 0.217

|Ψ(−0.25, 0.1)〉R 1.83 · 10−3 0.49 2.01 0.80 1.08 0.77 2.87 0.98 5.95 0.71 0.284

|Ψ(0.1i, 0.15)〉R 4.32 · 10−3 0.36 1.64 0.58 0.60 0.55 2.30 0.45 5.23 0.62 0.314

|Ψ(0.4, 0.2)〉R 7.75 · 10−3 0.74 1.55 1.37 5.71 0.51 0.94 0.69 4.59 0.63 0.196

|ψ01〉 7.91 · 10−6 0.25 4.90 0.20 3.57 0.27 4.92 0.19 1.50 0.48 0.111

|ψ12〉 2.63 · 10−3 0.63 4.26 0.34 4.13 0.95 4.53 0.64 0.57 0.41 0.226

|ψ135〉 3.41 · 10−3 0.32 5.94 0 0.73 0.44 5.21 0 1.57 0.22 0.072

|ψ012〉 2.09 · 10−3 0.38 6.25 0.91 5.59 0.67 0.50 1.29 4.90 0.44 0.233

aThe table presents for each state the minimal misfit ε and the corresponding optimal choice of parameters: the parameters
of the input squeezed coherent states (r1, θ1, α1, φ1, r2, θ2, α2, and φ2), the transmittance of the beam splitter T , and the
success probability P .
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feasible. The applied ranges are 0 < ri ≤ 1.5, 0 ≤ αi ≤ 2, 0.1 ≤ T ≤ 0.9, and all the phase angles θi and

φi are allowed to take any possible values between 0 and 2π. We also calculated the probability of success

of the generation for each of the analyzed states. This quantity is another figure of merit characterizing

the performance of a conditional scheme. In the case of SPD, it is defined as P = Tr(̂3|1〉〈1|), where
̂3 = Tr4 (|ψout〉3434〈ψout|) is the density operator of the mode on which the measurement is performed.

The two-mode output state after the beam splitter is the state |ψout〉34 not presented here explicitly.

In Table 1, we present the results of the optimization for several examples for the amplitude squeezed

states and for the special photon number superpositions defined in Eqs. (12) and (13) prepared in the

scheme. The examples show that all these states can be generated with high fidelities, that is, low misfits

by the proposed conditional scheme. The achievable success probabilities of the generation are rather high

compared to the ones that can be typically achieved in other quantum state engineering methods [7,8,11].

Table 2. Results of the Optimization for Optical Cat States for the Scheme of Fig. 1.a

state ε r1 θ1 r2 θ2 T P

|0.5〉C 1.42 · 10−5 0.70 5.74 0.32 5.51 0.59 0.153

|0.5〉C 1.42 · 10−5 0.58 0 0.66 0 0.40 0.205

|0.5〉C 1.42 · 10−5 0.47 0.03 0.28 0.06 0.5 0.110

|0.5〉C 1.42 · 10−5 0.68 0 0.46 0 0.5 0.192

|0.5〉C 1.42 · 10−5 1.33 0 0 0 0.90 0.033

|0.8〉C 5.58 · 10−4 0.40 5.59 0.40 4.53 0.40 0.093

|0.8〉C 5.58 · 10−4 0.98 0 0.36 0 0.5 0.199

|0.8〉C 5.58 · 10−4 0.86 0 0 0 0.71 0.077

|1.0〉C 2.89 · 10−3 0.43 5.54 0.67 4.16 0.36 0.117

|1.0〉C 2.89 · 10−3 1.08 0 0.19 0 0.5 0.166

|1.0〉C 2.89 · 10−3 1.5 0 0 0 0.67 0.090

|1.2〉C 9.91 · 10−3 0.19 1.94 1.32 2.95 0.51 0.153

|1.2〉C 9.92 · 10−3 1.02 0 1.5 0 0.22 0.170

|1.2〉C 9.91 · 10−3 1.09 0 0 0 0.50 0.125

|1.5〉C 3.61 · 10−2 0.61 0.70 0.82 2.75 0.57 0.104

|1.5〉C 3.61 · 10−2 0.64 0 0.14 0 0.05 0.029

|1.5〉C 6.11 · 10−2 1.5 0 0.01 0 0.5 0.124

|1.5〉C 3.61 · 10−2 0.90 0 0 0 0.25 0.113

aThe table presents for each state the minimal misfit ε and the corresponding optimal choice of parameters: the parameters
of the input squeezed vacuum states (r1, θ1, r2, and θ2), the transmittance of the beam splitter T , and the success probability
P . Parameters denoted by bold characters are fixed.

In Table 2, we present the results of the optimization for several examples for the optical cat states

prepared in the scheme. As is intuitively expected, the results of the optimization simply reflect that the

coherent signal is always zero, that is, the inputs of the scheme are squeezed vacuum states; therefore we

omit the parameters of the coherent signals from the table. We also exploit the special characteristics of
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the proposed scheme that some of the input parameters can be chosen freely in certain ranges without

the significant deterioration of the fidelity, as was pointed out in [16]. Accordingly, we consider cases

where the squeezing phases is θi = 0 or/and the transmittivity is fixed at T = 0.5, and when one of

the inputs is the vacuum state, that is, r = 0 which was previously excluded from the optimizations.

In the latter case, the considered scheme corresponds to the scheme proposed in [33]. The results show

that optical cat states can also be generated with high fidelity using the considered scheme. Note that

the fidelity decreases with increase in the coherent amplitude. For α < 1.2, the probability of success is

higher for two squeezed vacuum inputs than that for the case where one of them is a vacuum state. The

considered variations of fixing the transmittivity and the phases of squeezing do not change the accuracy

of the generation in the considered range of parameters. Finally, we note that owing to the fact that the

fidelity and the success probability is high for the low-amplitude cat states in this scheme, optical cat

states with larger amplitudes can be successfully prepared with the scheme proposed in [34].

4. Conclusions

We developed a description for the recently introduced single-step traveling-wave quantum state

engineering scheme using the one-dimensional coherent state representation introduced by Janszky. Due

to its relative simplicity, this description can be advantageously used for numerical optimization aiming

at determining the adjustable parameters of the scheme to produce a given target state. We determined

the sets of controllable parameters for several examples of amplitude squeezed states, special photon

number superpositions, and optical cat states. These state can be produced with high fidelity and

success probability.
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