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We propose two experimental schemes for producing coherent-state superpositions which approximate different
nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number
of linear optical elements and homodyne measurements, they can be used to generate various photon number
superpositions in which the number of constituent states can be higher than the number of measurements in the
schemes. We determine numerically the parameters to achieve maximal fidelity of the preparation for a large
variety of nonclassical states, such as amplitude squeezed states, binomial states, squeezed cat states, and various
photon number superpositions. The proposed setups can generate these states with high fidelities and with success
probabilities that can be sufficient for practical applications.
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I. INTRODUCTION

The generation of various nonclassical states of light is still
an important topic in quantum optics, owing to the numerous
applications of such states in quantum information processing,
quantum-enhanced metrology [1,2], and fundamental tests of
quantum mechanics. The preparation of states in traveling
optical modes is generally desired in many practical applica-
tions. Conditional preparation is a well-established technique
for this task. This consists in measuring one of the modes
of a bipartite correlated state which results in the projection
of the other mode to the desired state for certain results of
the measurement. Though this technique is probabilistic and
generally approximative, it can provide quantum states with
high enough fidelity for practical use.

Special attention has been devoted to the generation of
coherent-state superpositions referred to as Schrödinger cat
states in traveling modes [3–14] due to their important role
as basis states in optical quantum information processing
[15–20]. The components of these superpositions are two
macroscopically distinguishable coherent states with opposite
phases. These states have already been prepared in several
traveling-wave experiments [21–25], however, further efforts
are needed for producing Schrödinger cats with larger
amplitudes and higher fidelity to meet the criteria of the
developed applications.

Quantum state engineering has also been extensively stud-
ied with the general aim of the preparation of a variety of
different nonclassical states in traveling fields in the same
single experimental scheme [26–34]. It is a plausible approach
to construct systematically the photon number expansion of
the quantum states up to a given photon number. For realizing
this task various methods have been developed, such as
repeated photon additions [27], photon subtractions [28], and
the application of the superpositions of these processes [31,32].
It is a characteristic property of such schemes that the number
of the optical elements is generally proportional to the amount

of number states involved in the photon number expansion of
the target state. This implies that an increase in the number of
the constituent photon number states of the target state leads
to a decrease in the success probability and even to that in the
fidelity of the generation.

The possibility to overcome this issue is offered by the
idea of quantum state engineering via discrete coherent-state
superpositions. It has been shown that superpositions of even a
small number of coherent states placed along a straight line, on
a circle, or on a lattice in phase space, can approximate nonclas-
sical field states with a high degree of accuracy [26,33,35,36].
For certain quantum states the number of the required coherent
states for an approximation with a given accuracy can be less
than that of the terms of the number-state expansion of the
target state. Interestingly, different superpositions of various
geometries can approximate the same nonclassical state [33].
This feature can be explained by the overcompleteness of
the coherent states as a basis and even of discrete subsets
of them in the Hilbert space of a harmonic oscillator [37].
It is still an interesting open question how to find the smallest
number of coherent states whose superposition approximates
the desired state with a given precision. Intuitively one can
state that the best superpositions consist of coherent states
whose position and geometry in phase space “fit well” to the
Wigner function of the desired state [26,33]. Several methods
have been proposed for generating discrete coherent-state
superpositions on a circle or along a line in phase space
for electromagnetic fields in cavities [26,38–40] and for the
center-of-mass motion of a trapped ion [41]. An experimental
scheme has also been developed for generating Fock states in
a single-mode traveling-wave optical field based on coherent-
state superposition on a circle [29]. Apart from this latter
paper, quantum state engineering of traveling-wave optical
fields based on coherent-state superpositions appears to be a
largely unexplored area.

In this paper, we propose two experimental schemes con-
taining only a small number of linear optical elements and
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homodyne measurements that can be used for producing
coherent-state superpositions along a line and on a lattice in
phase space. These superpositions can approximate various
nonclassical states in traveling optical fields. The input states
of the schemes are superpositions of two coherent states with a
small phase separation and additional squeezed vacuum states
in one of the schemes. These coherent-state superpositions can
be generated by the scheme containing a cross-Kerr nonlinear-
ity as described in Ref. [42]. The analysis of the performance
of that scheme under decoherence shows that these states are
practically realizable ones [43] and the necessary phase shift
can be achieved by weak cross-Kerr nonlinearities realizable
in present experiments [44–46]. In our proposed schemes the
nonclassical states are prepared conditionally depending on
the results of the homodyne measurements. Our description
of the schemes leads to an optimization problem to determine
the optimal parameters of the homodyne measurements and
the input coherent-state superpositions to yield the desired
states. We have found that this can be solved efficiently with
genetic algorithms. We demonstrate through a broad variety
of examples that amplitude squeezed states, binomial states,
squeezed cat states, and various photon number superpositions
can be generated in the proposed schemes with a high precision
and with sufficient probabilities for practical applications. An
additional benefit of our schemes is that even though the
number of the required measurements is fixed and small (two
or three), they are capable of efficiently generating certain
states containing a large number of nonzero coefficients in
their photon number expansion.

The paper is organized as follows. In Sec. II, we describe
the schemes we propose and discuss how they can be applied
for generating coherent-state superpositions. In Sec. III, the
generation of various nonclassical states is analyzed in detail
and actual examples are presented. Finally, in Sec. IV, the
results are summarized and conclusions are drawn.

II. CONDITIONAL GENERATION OF COHERENT-STATE
SUPERPOSITIONS

In this section, we present two schemes for generating
various superpositions of a finite number of coherent states
around the origin of the phase space. Both schemes are built
from standard optical elements such as beam splitters and
homodyne detectors and use light in experimentally feasible
quantum states as inputs. As there is a broad variety of
nonclassical states which can be well approximated by such
superpositions, these schemes can generate light in quantum
states close to these nonclassical states.

Let us first consider the scheme presented in Fig. 1. The
involved beam splitters are standard 50:50 ones. We show that
this setup is capable of producing coherent-state superpositions
along a straight line or on a lattice in the phase space. The
superpositions in argument are of the form

|ψout〉(line) = Nline

2∑
n=−2

cn|nβ〉, (1)

|ψout〉(lattice) = Nlattice

1∑
k,l=−1

ckl|kβ + ilβ〉. (2)

ψ
(1)
in

ψ
(1)
in

ψ
(2)
in

ψ
(2)
in

|ψout

BS1

BS2

BS3

Homodyne
measurement 1

Xθ1 = x1

Homodyne
measurement 2

Xθ2 = x2

Homodyne
measurement 3

Xθ3 = x3

FIG. 1. Experimental scheme for generating superpositions of
coherent states on a straight line or on a lattice.

The input states |ψ (i)
in 〉 of the system are assumed to be the

following special coherent-state superpositions,

∣∣ψ (i)
in

〉 = Nψin (|αi〉 + |αi exp(−iϕ)〉), i = 1,2, (3)

where Nψin is a normalization factor. Such input states can
be generated by the experimental setup of Ref. [42]. This
scheme involves light at a single-photon level interacting with
a coherent beam in a cross-Kerr nonlinearity. This interaction
appears in many applications in photonic quantum information
processing [11,47–50]. In view of recent progress in the field
of periodic single-photon sources [51–53] and cross-Kerr
nonlinearities in traveling-wave configurations [44–46], the
given experiment seems to be realizable, so the input states
of Eq. (3) can be produced with the necessary phase shifts and
coherent amplitudes.

The magnitudes of the coherent amplitudes |α1| and |α2|
are the same in both of the states |ψ (1)

in 〉 and |ψ (2)
in 〉. The phases

of the amplitudes, however, can be different and they need
to be chosen according to the desired output state. When the
superpositions of states along a straight line are to be generated,
the input states have to be the same, |ψ (1)

in 〉 = |ψ (2)
in 〉. In

particular, if the superposition is required to be on the real axis
of the phase space, then the phase of the coherent amplitude in
the initial superposition must be chosen as arg α = π/2 + ϕ/2.
On the other hand, when the target superposition is taken on
an orthogonal lattice oriented parallel to the phase-space axes,
the phase of the coherent amplitude in |ψ (1)

in 〉 is the same as in
the previous case while the phase of the coherent amplitude in
|ψ (2)

in 〉 must be chosen so that arg α = ϕ/2. With these choices
for arg α, the parameter β in (1) and (2) is real.

Homodyne measurements in the setup can measure the
rotated quadrature operator Xθ . The overlap between the
eigenstate |xθ 〉 of this operator and a general coherent state
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|α〉 can be described by the inner product,

〈xθ |α〉 = π− 1
4 exp

[− 1
2 |α|2]

× exp
[− 1

2x2
θ +

√
2e−iθ xθα − 1

2α2e−2iθ
]
. (4)

Since we have already fixed the phase of the initial states,
the phase of the measured quadratures can be fixed as well.
Therefore, we choose the phases of the homodyne measure-
ments in Fig. 1 to be θ1 = θ2 = θ3 = 0 in the case of a
superposition on a straight line, while these phases are chosen
to be θ1 = θ3 = 0 and θ2 = π/2 for the superposition on a
lattice. In the latter case, the second homodyne measurement
measures the quadrature Y .

Using the well-known beam-splitter transformations acting
on coherent states as

|α1〉1 ⊗ |α2〉2 →
∣∣∣∣α1 + α2√

2

〉
3

⊗
∣∣∣∣α1 − α2√

2

〉
4

, (5)

and applying the projection |Xθi
= xi〉〈Xθi

= xi | correspond-
ing to the ith homodyne measurements (i = 1,2) on one of the
output modes of the beam splitters BS1 and BS2, we get the
intermediate states |ψ (1)

mid〉 and |ψ (2)
mid〉 that serve as the input of

the third beam splitter BS3 in the form∣∣ψ (1)
mid

〉 = N (a0|0〉 + a1|cat〉),∣∣ψ (2)
mid

〉(line) = N (b0|0〉 + b1|cat〉),∣∣ψ (2)
mid

〉(lattice) = N (b′
0|0〉 + b′

1|cat′〉),
where the states |cat〉 and |cat′〉 are Schrödinger cat states in
the real and imaginary axis of phase space, respectively,

|cat〉 =
∣∣∣∣
√

2α sin
ϕ

2

〉
+

∣∣∣∣−
√

2α sin
ϕ

2

〉
,

|cat′〉 =
∣∣∣∣
√

2αi sin
ϕ

2

〉
+

∣∣∣∣−
√

2αi sin
ϕ

2

〉
, (6)

and the coefficients ai , bi , and b′
i take the form

a0 = 〈
x1

∣∣√2αiei
ϕ

2
〉 + 〈

x1

∣∣√2αie−i
ϕ

2
〉
,

a1 =
〈
x1

∣∣∣∣
√

2αi cos
ϕ

2

〉
,

b0 = 〈
x2

∣∣√2αiei
ϕ

2
〉 + 〈

x2

∣∣√2αie−i
ϕ

2
〉
,

b1 =
〈
x2

∣∣∣∣
√

2αi cos
ϕ

2

〉
,

b′
0 = 〈

y2

∣∣√2αei
ϕ

2
〉 + 〈

y2

∣∣√2αe−i
ϕ

2
〉
,

b′
1 =

〈
y2

∣∣∣∣
√

2α cos
ϕ

2

〉
. (7)

From the latter two equations on, in the rest of this paper, α

denotes the magnitude (i.e., a real number, not including the
phase) of the coherent state appearing originally in the input
state defined in Eq. (3). We note that in Eq. (6) the coefficients
of the vacuum state can approach zero for certain parameters of
the input states and the results of the homodyne measurement,
so this part of the scheme is suitable for preparing Schrödinger
cat states with large amplitudes [54].

Considering the intermediate states described in Eq. (6), it
is easy to see that after the third homodyne measurement, the
output states are the ones given in Eqs. (1) and (2) with the
coefficients

c−2 = a1b1〈x3|0〉,
c−1 = a0b1〈x3|β〉 + a1b0〈x3| − β〉,
c0 = a0b0〈x3|0〉 + a1b1〈x3|2β〉 + a1b1〈x3| − 2β〉, (8)

c1 = a0b1〈x3| − β〉 + a1b0〈x3|β〉,
c2 = a1b1〈x3|0〉,

for the superposition along a line, and

c−1,1 = a1b
′
1〈x3| − β − iβ〉,

c0,1 = a0b
′
1〈x3| − iβ〉,

c1,1 = a1b
′
1〈x3|β − iβ〉,

c−1,0 = a1b
′
0〈x3| − β〉,

c0,0 = a0b
′
0〈x3|β〉, (9)

c1,0 = a1b
′
0〈x3|β〉,

c−1,−1 = a1b
′
1〈x3| − β + iβ〉,

c0,−1 = a0b
′
1〈x3|iβ〉,

c1,−1 = a1b
′
1〈x3|β + iβ〉,

for the superposition on a lattice. In these coefficients the
coherent amplitude reads

β = α sin(ϕ/2). (10)

Note that this amplitude is identical to the one appearing in the
superpositions of Eqs. (1) and (2).

In Fig. 2 we propose a different scheme in which we
replace one of the units producing the intermediate states of
Eq. (6) with an input state |ψ (2)

CSS〉 which is the equidistant
superposition of several coherent states along a line in phase
space. From a practical point of view this state can be a
squeezed vacuum state |ζ,0〉 with the complex squeezing
parameter ζ = r exp(iθ ). Such states can be approximated by

|ψ(2)
CSS

Homodyne
measurement 1

Xθ1 = x1

Homodyne
measurement 2

Xθ2 = x2BS1

BS2
|ψ(1)

in

|ψ(1)
in

|ψout

FIG. 2. Experimental scheme with two homodyne measurements
for generating superpositions of coherent states on a straight line or
on a lattice.
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coherent superpositions of a few coherent states of the form

∣∣ψ (2)
CSS

〉 =
n∑

l=−n

c′
l

∣∣lγ ei θ
2
〉
, n = N − 1

2
, (11)

with a high precision [26]. In this equation, the coherent
amplitude γ is real. For a real squeezing parameter ζ = r

corresponding to squeezing in the variance of the Y quadrature,
the coherent states in Eq. (11) are located along the real axis x.
For a complex squeezing parameter with θ = π , these states
are located along the imaginary axis y.

The coefficients c′
l and the coherent amplitude γ can be

determined by using the method of Ref. [26]. The coefficients
c′
l can be derived from the one-dimensional coherent-state

representation of the squeezed vacuum states and they read

c′
l = N exp

(
− 1

e2r − 1
|lγ |2

)
. (12)

The value of the coherent amplitude γ can be derived from the
condition that the misfit between the approximating coherent-
state superposition |ψ (2)

CSS〉 and the original squeezed vacuum
state |ζ,0〉 should be minimal. The misfit of a target state and
an approximate state is quantified in general by the parameter

ε = 1 − |〈ψappr.|ψtarget〉|2, (13)

based on the fidelity |〈ψappr.|ψtarget〉|2 of the states. In the actual
setting, |ψtarget〉 = |ζ,0〉 and |ψappr.〉 = |ψ (2)

CSS〉, but we shall use
this quantification in all the other cases studied in this paper.

In Fig. 3 we present the minimized misfit as a function
of the number of constituent states N in the superposition
for different values of the squeezing parameter ζ . This figure
clearly shows that by increasing the number of constituent
states, the accuracy of the approximation also increases. The
number of the required constituent states increases at a given
accuracy by increasing the real squeezing parameters.

FIG. 3. The minimized misfit between the approximating
coherent-state superposition and the original squeezed vacuum state
as a function of the number of constituent states N in the superposition
for different values of the real squeezing parameter r .

By using the superposition described in (11) and the input
state |ψ (1)

in 〉 given by (3) with the same phase parameter used
in the first setup, it is easy to see that the output of this second
setup is the following general coherent-state superposition,

|ψout〉 = Nout

1∑
k=−1

n∑
l=−n

ckl

∣∣∣∣kβ − 1√
2
lγ e

iθ
2

〉
, (14)

where

ckl = a|k|c′
l

〈
x2

∣∣∣∣kβ + 1√
2
lγ e

iθ
2

〉
. (15)

The coefficients a|k| in this expression are defined in Eq. (7).
These formulas describe various superpositions of N × 3
coherent states depending on the value of the phase parameter
θ . For θ = 0, one obtains superpositions along the real axis,
while for θ = π on an orthogonal lattice in the phase space.
In the latter case, the lattice has N elements in the direction
of the imaginary axis and three elements in the other direction
of the space.

We note here that in the examples presented in the next
section, instead of an exact squeezed vacuum state as the
input for the scheme of Fig. 2, we have calculated with
approximating coherent-state superpositions containing N =
7 coherent states. This choice results in misfits of ε < 10−4 for
the required squeezed vacuum states occurring in the examples.

In order to use the schemes presented in Figs. 1 and 2 for
preparing a nonclassical state, one can apply the following
strategy. First, a coherent-state superposition from Eqs. (1), (2),
and (14) must be chosen for approximating a given target state.
Next, all the parameters appearing in the chosen superposition
must be determined in a way that the misfit ε defined in
Eq. (13) should be minimal between the target state and the
approximating coherent-state superposition.

The variable parameters of the optimization include the
measurement results x1, x2, or y2, and x3 of the homodyne
measurements, the coherent amplitude α, and the phase shift ϕ
of the input states |ψ (i)

in 〉 for the first setup. For the second setup,
the corresponding parameters are the measurement results x1
and x2, the coherent amplitude α, and the phase shift ϕ of the
input states |ψ (1)

in 〉, the squeezing parameter r , and the coherent
amplitude γ characterizing the other input |ψ (2)

CSS〉. The opti-
mization problem is neither linear nor convex, moreover, the
relevant range of the parameters depends also on the physical
circumstances. In spite of these difficulties we have found that
it can be efficiently solved, e.g., using genetic algorithms.

Finally, let us introduce the other figures of merit, in addition
to the misfit, which are commonly used to characterize the
performance of conditional quantum state generating schemes.
In the case of conditional schemes for generating field states of
a traveling mode, the probability of success is also important.
For homodyne measurements the probability of obtaining
precisely an eigenvalue of the given quadrature operator is
obviously zero as the quadratures are continuous variables.
Hence, the probability of success corresponding to a single
measurement event resulting in x

opt
i by the ith homodyne

measurement after the beam splitter BSi in the schemes of
Figs. 1 and 2 is to be defined as [3]

P (i)
(
x

opt
i ,δi

) =
∫ x

opt
i +δi

x
opt
i −δi

dxi Tr
[
ρ

(i)
3 |xi〉〈xi |

]
, (16)
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where

ρ
(i)
3 = Tr4[|ψ (i)〉34 34〈ψ (i)|] (17)

is the density operator of the mode on which the ith homodyne
measurement is performed. The state |ψ (i)〉34 is the two-mode
state after the ith beam splitter. The explicit form of these states
can be obtained via a straightforward calculation from Eqs. (3)
and (5). The quantity δi defines the range in which the misfit
parameter ε in Eq. (13) is smaller than a prescribed value. We
define the overall probability of success P as the product of
the success probabilities P (i),

P =
∏

i

P (i)(xopt
i ,δi

)
. (18)

We note that in the first scheme the state |ψ (3)〉34 depends on
the results of the previous measurements, while in the second
scheme the state |ψ (2)〉34 depends on the result of the first
homodyne measurement. If the measurement ranges are small
enough, the success probability of the final measurement can
be calculated at the optimal parameter values of the previous
measurements and the independence of the individual mea-
surements assumed in Eq. (18) can be considered to be valid.

Note that the misfit parameter changes with the measure-
ment results within the measurement ranges. Therefore, it is
interesting how one can characterize the accuracy of the prepa-
ration of the given state after choosing certain measurement
ranges for the particular homodyne measurements. By dividing
all ranges to sufficiently small subranges we can assign a
certain measurement result for each of the subranges. Next, we
can calculate the misfit parameter and the overall probability of
success by the application of the formulas introduced earlier
for any of the possible measurement outcomes, that is, for
any particular combination of the subranges. Finally, we can
introduce the average misfit of the preparation as

εavg =
∑

j Pj εj∑
j Pj

, (19)

where Pj and εj are the overall probability of success and the
misfit of the j th outcome.

III. EXAMPLES OF GENERATING
NONCLASSICAL STATES

Thus far we have presented schemes which are capable of
generating superpositions of coherent states. In this section,
we demonstrate through examples how they can be applied to
generate a large variety of nonclassical states. Our examples
include amplitude squeezed states, binomial states, squeezed
cat states, and special photon number state superpositions that
can be important for protocols used in quantum optics and
quantum information science [55]. Let us first recapitulate
the definitions and some properties of the nonclassical states
whose generation we address.

Amplitude squeezed states are defined by Gaussian contin-
uous coherent-state superpositions on circles in phase space,

|α0,u,δ〉AS = c

∫
exp

(
−1

2
u2φ2 − iδφ

)
|α0e

iφ〉dφ, (20)

where c is a normalization constant, u determines the width
of the distribution, α0 is the magnitude of the amplitudes of

the superposed coherent states, and δ is a free modulation
constant. For u → ∞, the distribution contracts into the
coherent state |α0〉. In the opposite limit u 	 1 one has the
n-photon number state with n = δ. The state |α0,u,δ〉AS can
be expanded in photon number basis as

|α0,u,δ〉AS = c

∞∑
n=0

√
2παn

0

u
√

n!
exp

[
− (δ − n)2

2u2

]
|n〉. (21)

These states are intelligent states of the Pegg-Barnett
number-phase uncertainty relation and also of an alternative to
this relation introduced as the number-operator–annihilation
operator uncertainty relation for a certain parameter range
[56–58]. Hence, they can be used for testing experimentally
various uncertainty relations [59,60].

A single-mode binomial state can be defined by the follow-
ing number-state expansion [61],

|p,M〉B =
M∑

n=0

BM
n |n〉, (22)

where the BM
n coefficients read

BM
n =

[
M!

n!(M − n)!
pn(1 − p)M−n

]1/2

. (23)

From Eqs. (22) and (23) it can be seen that given any finite M , if
p = 0, |p,M〉 is reduced to the vacuum state |0〉. On the other
hand, if p = 1, we obtain the number state |n = M〉. In the
limit p → 0 and M → ∞, but with pM = α2 constant, |p,M〉
becomes a coherent state |α〉. For 0 < p < 1 the binomial
state is the superposition of the first M + 1 photon number
states. Even though efficient schemes have been developed to
generate the binomial state in the framework of cavity quantum
electrodynamics, continuous-wave schemes are not known
[62]. These states can be used, e.g., for measuring the canonical
phase of the quantum electromagnetic field states [63]. They
can also serve as optimal input states for communication
purposes in a non-Gaussian quantum channel [64].

The squeezed cat states are defined as

|α,ζ 〉±SC = N Ŝ(ζ )(|α〉 ± |−α〉), (24)

where Ŝ(ζ ) is the squeezing operator. The even and odd cat
states form a basis for linear optical quantum computing
[18,20]. Generally, the coherent amplitude is expected to be
relatively large (α > 2), improving the approximate orthogo-
nality of the constituent states. Squeezed cat states have already
been generated experimentally in traveling fields, though the
amplitudes were smaller than the above limit [22,25,65]. These
states can be also used in optical quantum metrology for
high-precision phase measurement in the low-photon-number
regime [2].

It is clear that all the introduced states can contain several
photon number states in their number-state expansions with
non-negligible coefficients for certain parameters. So they
can be used to demonstrate that the proposed schemes can
generate photon number superpositions containing far more
constituent states than the number of measurements in the
proposed schemes.

Finally, we will consider the generation of the following
particular photon number superpositions containing photon
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number states of a few photon numbers,

|ψ2〉 = |2〉,
|ψ02〉 = 1√

2
(|0〉 + |2〉),

|ψ02〉′ = 1√
10

(3|0〉 + |2〉),

|ψ12〉 = 1√
2

(|1〉 + |2〉),

|ψ012〉 = 1√
3

(|0〉 + |1〉 + |2〉), (25)

|ψ012〉′ = 1√
6

(2|0〉 + |1〉 + |2〉),

|ψ012〉′′ = 1√
18

(4|0〉 + |1〉 + |2〉),

|ψ012〉′′′ = 1

3
(2|0〉 + 2|1〉 + |2〉),

|ψ(ζ,χ ′)〉RS = Ŝ(ζ )

(
|0〉 + χ ′ 3

2
√

2
|1〉 + χ ′

√
3

2
|3〉

)
.

Finite superpositions of Fock states are needed for realizing
non-Gaussian quantum gates that are essential for universal
continuous-variable quantum computation in the optical set-
ting [55,66,67]. For example, the resource state |ψ(r,χ ′)〉RS
can be used for realizing cubic nonlinearity [66]. In principle,
these states can be generated by three-photon subtraction.
The generation of the states |ψ2〉, |ψ02〉, |ψ12〉, and |ψ012〉 by
two-photon subtraction are considered in Ref. [28], so we can
use them for comparing the performance of the given quantum
state engineering methods. The coefficients of the other super-
positions presented in Eq. (25) are chosen in an ad hoc manner.

Our aim is to optimize the introduced schemes with the
objective of minimizing the misfit between the desired state and
the approximating one which is generated. In our calculations
we have chosen to use a genetic algorithm [68] for solving this
optimization problem. The optimization parameters have to be
constrained so that their bounds are physically reasonable and
the optimization problem is numerically stable and feasible.
First, the ranges of the measurement parameters xi have to
be chosen so that the coefficients in the superpositions (1),
(2), and (14) depending on these parameters can take all their
possible values. We found that in all the considered examples,
the values of the measurement parameters took their values
within the range −10 to 10, therefore we have set the range of
the optimization for these parameters accordingly. Similarly,
in the scheme of Fig. 2, we chose the range of the squeezing
parameter by broadening it empirically to make all the desired
approximate states feasible.

Next, we consider the parameters characterizing the input
states, that is, the coherent amplitude α and the phase rotation
ϕ, which determine the coherent amplitude β according to
Eq. (10). Recall that the parameter β determines the distance
between the coherent states in the generated coherent-state
superpositions in the scheme of Fig. 1 and it also influences the
structure of the output superposition of the setup presented in
Fig. 2. In coherent-state superpositions approximating quan-
tum states the value of this parameter is generally around 1 [33],

TABLE I. The minimal misfit ε, the corresponding input-state
parameters α,ϕ, and the measurement results x1, x2, and x3 of the
homodyne measurements for the amplitude squeezed state |1,2,1〉AS

approximated on a lattice using the scheme of Fig. 2. The optimization
was performed for different ranges of the coherent amplitude α and
the phase difference ϕ.

ε α ϕ β x1 x2 x3

1.421 × 10−4 22981 7.1×10−5 0.82 2.26 −2.18 4.13
1.031 × 10−4 4363 3.9×10−4 0.85 2.039 −2.2 3.81
1.027 × 10−4 349 4.9×10−3 0.86 1.97 −2.18 3.75
1.137 × 10−4 886 2×10−3 0.89 1.83 2.15 3.54
1.046 × 10−4 347 5.1×10−3 0.87 −1.91 2.17 3.65
1.055 × 10−4 238 7.3×10−3 0.88 1.88 −2.16 3.62
1.586 × 10−4 698 2.3×10−3 0.8 2.35 −2.19 4.241
1.046 × 10−4 417 4.2×10−3 0.88 −1.89 2.17 3.62
1.106 × 10−4 307 5.5×10−3 0.85 2.08 2.2 3.87

ensuring the necessary quantum interference for the genera-
tion. From these properties it can be anticipated that the scale of
the parameters α and ϕ can be chosen relatively freely, applying
the only restriction that the corresponding β remains around 1.

In order to demonstrate this freedom, we chose different
ranges for ϕ in the scale between 10−6 and 10−1 and the co-
herent amplitudes α in the corresponding ranges determined as
described above in the problem of finding optimal parameters
for generating different quantum states using our schemes. We
found that it is possible to obtain solutions with similar small
misfit values for any proper range of α and ϕ and for any
considered state. An example for this is shown in Table I.
In this table we present the results of the optimization for
the amplitude squeezed state |1,2,1〉AS approximated by the
superposition of Eq. (2) in the scheme of Fig. 2. From the first
three rows of the table it can be seen that misfits of the same
scale can be achieved for different scales of the parameters α

and ϕ. Interestingly, solutions of similar misfits can also be
obtained even if the optimization is accomplished for different
subranges of the same scale of these parameters (see, e.g.,
second three rows of the table). Moreover, this property holds
for the last three rows where the optimization is performed only
for α and the measurement parameters while fixing the value of
ϕ ad hoc. From the data of Table I one can conclude that there
exist plenty of pairs of the parameters α and ϕ that can lead to
misfits of the same scale. The optimization problem appears to
have a large amount of local minima and it appears to be highly
degenerate. Exploiting this feature of the proposed setups, in
the following we choose the order of magnitude of the phase
shift ϕ around 10−3 in our calculations. Note that in a recent
cross-Kerr experiment [45] using a vapor-field hollow-core
photonic crystal fiber, phase shifts up to 10−2 have been proved
to be realizable, therefore the chosen phase shift is reasonable.

In the following tables we present how efficient these
schemes are for generating nonclassical states described in
the beginning of this section. In Tables II and III the results
of the optimization are shown for the scheme of Fig. 1 for
approximations by coherent-state superpositions along a line
and on a lattice, respectively, described by Eqs. (1) and (2).
The same is given in Tables IV and V for the scheme of Fig. 2
for superpositions along a line and on a lattice described by
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TABLE II. Results of the optimization for different nonclassical states for the scheme of Fig. 1. The states are approximated by coherent-state
superpositions along a line described by Eq. (1). The table presents for each state the misfit ε of the approximation and the optimized parameters
leading to this misfit including the coherent amplitude α, the phase distance ϕ, and the resulting coherent amplitude β of the input states, the
measurement results xi of the homodyne measurements, and the overall probability P , the corresponding ranges δi of the measurements, and
the average misfit εavg.

State ε α ϕ β x1 x2 x3 δ P εavg

|1,1.5,1〉AS 8.8×10−5 616 1.7×10−3 0.55 1.14 0.82 2.63 0.75 0.004 0.073
|1,2,1〉AS 2.6×10−4 245 6.3×10−3 0.77 −1.97 −0.25 −1.94 0.35 0.025 0.011
|√2,2.5,2〉AS 7.5×10−3 698 3.7×10−3 1.29 2.13 −1.03 −1.52 0.3 0.005 0.043
|√2,3,2〉AS 4.4×10−3 691 3.1×10−3 1.31 −2.17 −1.0 −1.61 0.4 0.012 0.068
|0.1,5〉B 2.5×10−4 780 6.4×10−3 0.6 0.29 3.72 2.62 1.0 0.004 0.041
|0.3,6〉B 9.6×10−3 492 5.2×10−3 1.29 −0.38 2.52 0.8 0.4 0.014 0.024
|0.2,8〉B 2.8×10−3 939 2.9×10−3 1.39 0.54 −1.86 2.17 0.5 0.017 0.024
|1.5,0〉SC 5.4×10−4 487 2.9×10−3 0.71 0 0 0.11 0.5 0.048 0.058
|2.5,0〉SC 3.6×10−5 947 2.6×10−3 1.25 0 0 0 1.0 0.076 0.034
|3,0〉SC 2.5×10−6 732 4.1×10−3 1.5 0 0 0 1.2 0.096 0.011
|4,0〉SC 9.6×10−7 491 8.1×10−3 2 0 0 0 2.1 0.124 0.025
|1.5,0.05〉SC 5.16×10−3 857 1.68×10−3 0.72 −0.12 0.25 0 0.5 0.183 0.067
|1.8,0.05〉SC 7.2×10−3 658 2.7×10−3 0.9 0.11 0.11 0 0.6 0.123 0.058
|2,0.05〉SC 8.1×10−3 457 4.3×10−3 0.98 −0.11 0.42 0 0.5 0.135 0.035
|ψ012〉′′ 3.4×10−4 269 1.9×10−3 0.26 −3.99 0.1 −0.45 0.5 0.085 0.019
|ψ(0.15,0.1)〉RS 4×10−3 225 7.8×10−3 0.92 3 −1.98 0.78 0.5 0.022 0.067
|ψ(0.3,0.1)〉RS 4.3×10−3 177 2.5×10−3 0.22 2.3 1.59 0.5 0.4 0.028 0.048

Eq. (14). These tables show the misfit of the approximation,
all the necessary optimized parameters leading to this misfit
including the parameters of the input states, that is, the coherent
amplitude α, the phase distance ϕ, and the squeezing parameter
r in the second scheme, the measurement results xi of the
homodyne measurements, and the overall probability P , the
corresponding ranges δi of the measurements, and the average
misfit εavg for different nonclassical states.

The tabulated data clearly demonstrate that a wide variety
of states can be approximated with high precision using our
proposed schemes. Note that there are states which appear
in multiple tables, that is, they can be approximated using
any of the considered schemes, using various superpositions,
albeit with different precision. This is in accordance with the
general property of approximations via discrete coherent-state
superpositions that they are not unique due to the overcom-
pleteness of coherent states, as mentioned in the Introduction.

The minimal values of the misfits characterizing the accuracy
of the approximation that can be achieved vary in the range
between 10−6 and 10−3. This precision can be considered
to be rather high compared to those that can probably be
achieved for the studied states by the quantum state engineering
methods based on photon number expansion [28,31]. It can be
partly explained by the high fidelity of the approximation via
discrete coherent-state superposition itself [26,33] on which
the proposed schemes are based.

Although the tables show only certain optimal sets of
measurement parameters, we note that there are various sets of
these parameters leading to the same results for approximating
a given state. This degeneracy is implied by the symmetries of
the formulas in Eqs. (7)–(9). In the scheme of Fig. 1 the same
value of the misfit parameter can be achieved by swapping the
values of x1 and x2 while changing the sign of x3. Changing
the sign of both x1 and x2 simultaneously does change the

TABLE III. Results of the optimization for different nonclassical states for the scheme of Fig. 1. The states are approximated by coherent-state
superpositions on a lattice described by Eq. (2). The table presents for each state the misfit ε of the approximation and the optimized parameters
leading to this misfit including the coherent amplitude α, the phase distance ϕ, and the resulting coherent amplitude β of the input states, the
measurement results xi of the homodyne measurements, and the overall probability P , the corresponding ranges δi of the measurements, and
the average misfit εavg.

State ε α ϕ β x1 x2 x3 δ P εavg

|1,1,1〉AS 2.3×10−4 1114 1.1×10−3 0.63 1.77 0.23 2.02 0.5 0.005 0.078
|√2,1.5,2〉AS 4.2×10−3 341 5.1×10−3 0.86 0.92 −1.04 2.37 0.4 0.002 0.082
|0.1,4〉B 1.7×10−4 481 2.3×10−3 0.56 0.84 1.51 2.03 0.4 0.001 0.028
|0.4,3〉B 6×10−3 1105 1.9×10−3 1.02 0 −1.58 1.55 0.3 0.003 0.049
|0.2,8〉B 6.3×10−3 449 6.9×10−3 1.54 0 −2.15 2.1 0.5 0.004 0.054
|0.2,10〉B 1.5×10−3 1679 1.7×10−3 1.42 0 −2.39 1.93 0.8 0.002 0.051
|0.3,10〉B 6.1×10−3 407 8.3×10−3 1.71 0 −2.43 2.44 0.7 0.001 0.057
|ψ02〉′ 6.4×10−4 227 1.5×10−3 0.17 −0.09 −2.99 0 0.3 0.003 0.062
|ψ012〉′′ 7.9×10−4 374 5.8×10−3 1.1 −2.47 −1.93 1.61 0.5 0.008 0.087
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TABLE IV. Results of the optimization for different nonclassical states for the scheme of Fig. 2. The states are approximated by coherent-state
superpositions along a line described by Eq. (14). The table presents for each state the misfit ε of the approximation and the optimized parameters
leading to this misfit including the coherent amplitude α, the phase distance ϕ, and the resulting coherent amplitude β, and the squeezing
parameter r of the input states, the measurement results xi of the homodyne measurements, and the overall probability P , the corresponding
ranges δi of the measurements, and the average misfit εavg.

State ε α ϕ β r γ x1 x2 δ P εavg

|1,1,1〉AS 1.7×10−3 549 1.4×10−3 0.38 0.1 0.44 0.68 1.25 0.25 0.032 0.045

|1,2,1〉AS 3.4×10−3 1355 1.2×10−3 0.78 0.1 0.44 0.42 1.35 0.3 0.094 0.011

|√2,3,2〉AS 5.9×10−3 383 6.8×10−3 1.31 0.002 0.32 0.5 0.92 0.3 0.039 0.011

|0.2,8〉B 6×10−3 1883 1.2×10−3 1.14 0.1 0.44 0.41 1.08 0.35 0.098 0.012

|1,0〉(+)
SC 9.6×10−5 245 1.5×10−3 0.19 0.43 0.79 0 0 0.3 0.107 0.025

|1,0.5〉(+)
SC 3×10−3 579 3.7×10−3 1.07 1.04 1.35 0.67 0 0.3 0.024 0.012

|2,0.3〉(+)
SC 3.4×10−4 1849 1.6×10−3 1.48 1.18 1.46 0 0 0.3 0.022 0.012

|3,0.3〉(+)
SC 3.1×10−4 2316 1.9×10−3 2.22 1.15 1.43 0.04 0 0.4 0.014 0.031

|1,0.3〉(−)
SC 3.4×10−4 893 1.9×10−3 0.83 0.79 1.13 0 0 0.35 0.059 0.049

|2,0.3〉(−)
SC 2.9×10−4 2024 1.5×10−3 1.49 1.15 1.43 0 0 0.65 0.089 0.048

|ψ2〉 1.1×10−3 442 1.5×10−3 0.33 0 0.32 0.51 0 0.12 0.013 0.051

|ψ02〉 9.1×10−4 731 1.1×10−3 0.38 0.002 0.32 0 0 0.15 0.028 0.025

|ψ012〉 1.7×10−4 243 1.8×10−3 0.21 0 0.32 0.13 0.5 0.35 0.189 0.044

|ψ012〉′′′ 4.2×10−3 242 3.9×10−3 0.47 0.001 0.32 0.23 1.2 0.4 0.175 0.019

|ψ(0.1,0.15)〉RS 8.7×10−3 2155 1.3×10−3 1.4 0 0.32 2.78 2.21 0.3 0.048 0.021

|ψ(0.3,0.1)〉RS 1.3×10−3 227 9.9×10−3 1.12 0.14 0.48 2.053 1.69 0.6 0.176 0.041

value of the misfit neither. We have also noticed that changing
only the sign of either x1 or x2 results in the misfit within
numerical precision, even though this does not follow from
the form of the respective equations. The same holds for the
scheme of Fig. 2 for the change of the sign of x1. We have
confirmed this latter property for all the approximated states.

The overall probability values presented in the tables were
calculated by taking into account the degeneracies of the

optimal measurements we have just described. The values
of the probabilities are in the range of 10−3–10−1. Lower
probabilities occur mainly at approximating states on a lattice
in the scheme of Fig. 1 (Table III). These probabilities can
be sufficient for practical applications. We chose the same
parameter δ (the parameter which determines the range of the
measurements) for all of the measurements. This parameter
was set to a value for which the average misfit was around 10−2.

TABLE V. Results of the optimization for different nonclassical states for the scheme of Fig. 2. The states are approximated by coherent-state
superpositions on a lattice described by Eq. (14). The table presents for each state the misfit ε of the approximation and the optimized parameters
leading to this misfit including the coherent amplitude α, the phase distance ϕ, and the resulting coherent amplitude β, and the squeezing
parameter r of the input states, the measurement results xi of the homodyne measurements, and the overall probability P , the corresponding
ranges δi of the measurements, and the average misfit εavg.

State ε α ϕ β r γ x1 x2 δ P εavg

|1,1,1〉AS 3.2×10−4 264 2.5×10−3 0.33 0.1 0.44 1.06 1.75 0.25 0.008 0.047

|1,2,1〉AS 3.2×10−6 586 2.7×10−3 0.78 0.13 0.47 0.42 1.5 0.35 0.126 0.003

|√2,1.5,2〉AS 2.5×10−3 1595 1.4×10−3 1.14 0.37 0.73 1.51 1.72 0.25 0.026 0.048

|0.2,8〉B 6.9×10−6 1810 1.5×10−3 1.31 0.2 0.55 0 1.46 0.35 0.134 0.001

|0.4,6〉B 3.7×10−4 771 4.6×10−3 1.76 0.43 0.79 1.12 1.62 0.4 0.028 0.009

|0.5,5〉B 3.3×10−3 2751 1.3×10−3 1.83 0.54 0.9 1.49 1.65 0.45 0.014 0.028

|ψ02〉 1.5×10−6 267 4.7×10−3 0.63 0.11 0.45 0 0 0.15 0.016 0.033

|ψ12〉 1.5×10−2 644 2.3×10−3 0.74 0.21 0.56 0.63 0.47 0.13 0.011 0.059

|ψ012〉′ 9.2×10−5 90 7.5×10−3 0.33 0.1 0.44 0.11 1.04 0.2 0.051 0.003

|ψ012〉′′′ 1.5×10−3 403 2.7×10−3 0.55 0.13 0.47 0 0.4 0.15 0.031 0.011

|ψ(−1.1,0.03)〉RS 1.3×10−3 45 7.9×10−3 0.18 1.37 1.59 0.93 0.027 0.25 0.054 0.038

|ψ(−1.1,0.09)〉RS 5.5×10−3 404 1.4×10−3 0.28 1.4 1.61 1.13 0.07 0.2 0.033 0.039
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FIG. 4. The average misfit εavg as a function of the overall
probability P for the cat state |2.5,0〉SC approximated along a line
in the scheme presented in Fig. 1.

Obviously, increasing the parameter δ also increases the overall
probability P and the average misfit εavg, which means that the
accuracy of the generation decreases. In Fig. 4 we present the
average misfit εavg as a function of the overall probability P

for the cat state |2.5,0〉SC generated in the scheme of Fig. 1.
If this relationship is known for a given state, one can find
the optimal range δ of the measurements by deciding upon
the optimal balance between the two relevant characteristics
of the efficiency, the average misfit and the overall probability.
The low values of the success probabilities can be explained
by the feature of these schemes that they are applicable for the
preparation of several states depending on the measurement
results of the homodyne measurements. On the other hand,
these probability values can be still considered to be relatively
high when comparing them to the ones achievable in other
quantum state engineering schemes.

In support of the comparison between the performance of
the presented schemes to the one of the quantum engineering
method based on photon subtraction [28], we have considered
the generation of states |ψ2〉, |ψ02〉, |ψ12〉, and |ψ012〉 for which
the corresponding data are available for the latter method. As
these states contain two-photon states they can be generated
by two-photon subtraction. The results show that both the
misfits and the success probabilities are significantly better
for the methods proposed in the present paper (cf. Fig. 6 of
Ref. [28] and the corresponding data in Tables IV and V). A
major advantage of our method is its ability to produce states
containing higher photon number states with similarly high
performance. Some examples for such states are the considered
binomial states |p,M〉B, the resource states |ψ(ζ,χ ′)〉RS, and
the squeezed cat states |α,ζ 〉SC for higher values of α.

Finally, it is worth discussing the generation of squeezed cat
states in more detail because of their significance in quantum
information processing. From Table II it can be seen that it
is possible to generate almost perfect (εavg < 4 × 10−2) cat
states with large amplitudes (α > 2) and with probabilities
P > 4 × 10−2 in the scheme of Fig. 1. As we mentioned
earlier, a simple cat state can also be generated even with higher
performance after the first beam splitters in this scheme. The
complete setup has a benefit, however. The experimentally
achievable separation of the initial state of Eq. (3), charac-
terized by the parameter β, can be limited in practice. The
amplitudes α of the generated cat states are twice bigger than

β according to our results, hence it increases the parameter
domain of the achievable states.

Squeezed cat states can be efficiently generated in all the
considered schemes by coherent state superpositions along a
line (Tables II and IV). Squeezed superpositions of coherent
states with large amplitudes can be also generated by photon
subtraction and addition with similar fidelities. The disadvan-
tage of these methods is that to achieve larger amplitudes,
successive applications of these processes with an increasing
number of events are needed that can lead to a significant
decrease of the success probability [9], while in the presented
methods the success probability stays in the same range for all
considered amplitudes.

IV. CONCLUSIONS

We have proposed two quantum state engineering schemes
containing only a few beam splitters and two or three homo-
dyne measurements for the preparation of nonclassical states
based on coherent-state superpositions in traveling optical
fields. In spite of their simplicity, we have found that the
schemes are capable of generating a large variety of nonclassi-
cal states including amplitude squeezed states, binomial states,
squeezed cat states, and various photon number superpositions.
We have demonstrated this by calculating the parameters of the
setups to achieve the maximal fidelity of the generated state
with respect to the desired one for several states. We have found
that the achievable fidelities are high, while the parameters re-
quired to achieve them are experimentally feasible. Moreover,
the same figures of merit can be achieved with several different
choices of parameters of the input states, which introduces
a freedom to choose a parameter set which is most in line
with the characteristics of the applied experimental technology.
Meanwhile, the success probabilities are also found to be
relatively high.

When compared to photon-addition- or photon-subtraction-
based quantum state engineering schemes, our proposals out-
perform those in some situations, especially when the states
can be expressed as a superposition of a large amount of
photon number states. The required number of elements and
measurements increases with the number of these states in
those schemes, which decreases their success probability and
fidelity. In our schemes the required number of elements and
measurements is fixed and small.

For traveling optical fields the opportunities introduced by
the application of coherent-state superpositions is largely un-
explored in spite of the experimental feasibility of the required
ingredients in this experimental context. We have demonstrated
that our setups of this kind possess features which make them
a good candidate for quantum state engineering devices even
in practical applications.
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