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Pécs, Hungary

2014





Contents

Introduction 1

Part I 5

1. Definitions of quantum walks 7
1.1. Discrete time quantum walks 7

1.1.1. Basic properties, the one-dimensional Hadamard walk 10
1.1.2. Two-dimensional quantum walks 13
1.1.3. Quantum search 15

1.2. Continuous time quantum walks 18
1.3. Scattering quantum walks 20
1.4. Szegedy’s quantum walk 22
1.5. Optical realizations 24

2. Entropy rates of stochastic processes 29
2.1. Definition of the entropy rate 29
2.2. Examples 31

3. Asymptotics of random unitary operations 33
3.1. Random unitary evolution of quantum Markov chains 33
3.2. Properties and asymptotics of RUO maps 34
3.3. Example 36

4. Walks on percolation graphs 41
4.1. Definition and some properties of percolation graphs 41
4.2. Overview of quantum walks on percolation graphs 42

***
Part II 49

5. Asymptotics of quantum walks on percolation graphs 51
5.1. Definitions 51
5.2. Formal solution and a polynomial construction 53
5.3. General method 55
5.4. Shift conditions on regular lattices 57
5.5. Conclusions 59

6. Determining asymptotics through pure states 61
6.1. Pure state ansatz 61
6.2. Percolation quantum walks 63
6.3. Conclusions 64

7. One-dimensional quantum walks on percolation graphs — complete analysis 67
7.1. Explicit solutions 67
7.2. Edge states 73
7.3. Conclusions 74



8. Two-dimensional quantum walks on percolation graphs 77
8.1. Description and asymptotics 77
8.2. The two-dimensional Hadamard walk: breaking the directional symmetry 79
8.3. The Grover-walk: preserving trapping on percolation lattice 83
8.4. Conclusions 85

9. Entropy rate of quantum walks 87
9.1. Periodically measured walks in a black box 87
9.2. Entropy rate of some classical random walks 88
9.3. Discrete time quantum walks as stochastic processes 90
9.4. Solution — employing the quantum Markov property 91
9.5. Calculating the entropy rate of one-dimensional QWs 95
9.6. Upper bound for the entropy rate 100
9.7. Analysis of independent systems — the “most quantum" case 103
9.8. The quantum entropy rate of periodically measured QWs 105
9.9. Conclusions 106

Summary 109

List of new scientific results 119

Összefoglalás 121

Új tudományos eredmények 131

List of publications I

Acknowlegdement III

Appendix V
A. Entropy rate of one-dimensional Hadamard walk for waiting time w = 2 V
B. Approximating entropy rates of one-dimensional QWs VII

Bibliography XI







Introduction

Walks are elementary processes that consist of a sequence of atomic steps. If the sequence of steps is

random, we call the process random walk [1–7]. In general, random walks follow the Liouville equation,

thus can be fully described and understood in terms of classical mechanics. Random walks are basic

mathematical tools, used to model a rich variety of physical systems. The path of a single dye molecule

in water (diffusion) [8–12], the fluctuation of stocks [13–15] and temperature [16], the spreading of dis-

eases [17–19], mass transport [20], steady states in nonequilibrium [21, 22], Ising spin chains [23, 24],

evolutionary games [25], and surfing on the internet [26, 27] are amongst the typical examples of such

systems. In computational sciences it was also found beneficial to employ random walks, e.g. as an ap-

proach to describe probabilistic Turing machines. Throughout this thesis we will use the term classical

walk as a synonym for random walks.

However, there are countless walk-like phenomena in nature, which do not fit in the framework of

classical mechanics, e.g. the propagation of a single excitation in a crystal, the efficient energy transport

during photosynthesis [28] in plants or the spreading of quantum information on quantum networks. Such

phenomena called for the extension of walks to the quantum domain. We call these extensions quantum

walks [29–38]. Similarly to classical walks, quantum walks can model physical systems of many kind. In

fact, most quantum processes can be viewed as generalized quantum walks. Here, we have to note that

classical walks can be generalized to quantum walks in several ways. Naturally, these definitions are all

competing and complementing each other, however, most of them share a common point: They satisfy

the Schrödinger (von Neumann) equation or a Master equation.

By design, quantum walks are perfect candidates for modeling quantum transport [39–44], i.e. the

propagation of a single excitation on a graph structure. In quantum information theory [45, 46], quantum

walks are widely used to construct quantum algorithms, for example, to perform search on an unstructured

database [47–53]. Quantum walks are also universal primitives of quantum computation [54–56]: On a

quantum computer, the computation process is described by unitary (reversible) transitions between

elements of the state space. One can consider these elements as vertices of a graph, and the unitary

computation process as a quantum walk on this very graph.

Since their introduction, quantum walks gained considerable attention. Up to date, several aspects

of quantum walks were studied, all aimed to shed some light on the quantum features of this simple

model. The straightforward construction of quantum walks makes them suitable tools for studying some

properties of solid states materials. In particular, using quantum walk based models in the novel research

field of topological insulators [57–61] is rather prosperous. The spreading nature of quantum walks

also makes them suitable for generating entanglement [62–66]. The von Neumann entropy, that is used
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to quantify the entanglement also allows for studying the thermodynamical aspects of quantum walks

[67, 68]. Similarly to transport [39–43], perfect state transfer [69] can be understood in terms of quantum

walks. Decoherence in quantum walks can also lead to interesting behaviors, for a review see [70]. Several

other quantum phenomena are studied in terms of quantum walks, e.g. aperiodic behavior in chains [71],

effects of non-local initial conditions [72], movement in electric field [73], movement including jumps [74],

self-avoidance [75], and the effect of more internal states [76–79], localization in regular lattices [80, 81]

and symmetries [82]. Quantum walks can exhibit a self similar spectral structure [83] commonly known as

Hofstadter’s butterfly [84]. The Google PageRank algorithm have also been generalized to the quantum

domain using a quantum walk based definition [85]. The two-particle extension of quantum walks [86, 87]

and its algorithmic uses [88, 89] are particularly interesting. Introducing even more particles can lead to

many-particle interference [90] and universal quantum computation [56], once again.

The universality and other promising aspects of quantum walks have caught the attention of experi-

mentalists. To implement quantum walks, several experimental schemes were proposed based on various

physical systems: cavity quantum electrodynamics [91, 92], Bose-Einstein condensate [93], linear optics

[94–96], optical angular momentum of light [97], parametric down-conversion in nonlinear crystals [98],

neutral trapped atoms [99, 100] and Rydberg atoms [101] in optical lattices, ion traps [102], optical cavity

[103], superconducting qubits [104], semiconductor quantum rings [105, 106], array of quantum dots [107],

and artificial graphene [108]. For a review on realization schemes, see [109].

In the recent years the number of actual realizations have grown significantly. Quantum walks have

been successfully demonstrated in optical lattices using single neutral atoms [110, 111] and trapped ions

[112, 113]. These experiments all share a similar approach: the internal state of the atom is rotated by

an electromagnetic field, then the atom is coherently displaced in the lattice corresponding to its internal

state. The repetition of this process realizes a discrete time quantum walk. A nuclear magnetic resonance

based experiment (realizing a quantum information processor consisting of three qubits) is reported in

[114]. Another promising realization family is the photonic quantum walk: These experiments are quite

diverse considering the media where the photons propagate. In integrated waveguide arrays [115–118]

photons scatter between parallel waveguides of close proximity; their final position density is given by a

continuous time quantum walk. These arrangements are very well suited to study multi-photon (i.e.multi-

particle) walks and decoherence, as well. Experiments are also performed with linear optics efficiently

mimicking the optical Galton board [119, 120], using linear interferometer network [121] , and by the time

bin encoding of the position of the walker [122–125]. This latter approach is also suitable for studying

higher dimensional walks, multi-particle walks with interaction, and decoherence.

Errors in the underlying graph or lattice are a special source of noise in walks. For example, hot

water (liquid) passing through ground coffee (porous or granular material) or the robustness of computer

networks [126, 127] under attacks or power outage can be modeled with graphs, where connections are
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broken with some probability. This concept is called percolation [128–130]. Percolation is extensively

studied in relation to classical walks. On the other hand, the question of the effect of percolation on

quantum walk models is rather new and there exist only a few studies on this topic [131–137]. Most

quantum walks are defined via a unitary time evolution, having a closed system dynamics. The effect of

percolation can make the time evolution open, and in some cases the system can be described in terms of

random unitary operations [138–140] (RUO maps). The first part of this very thesis aims to explore the

properties of quantum walks on percolation graphs using the analytical tools available for RUO maps.

In physics, the entropy is the most well known measure of the information content (or disorder)

[45, 46, 141–144]. However, the definition of the entropy is very special, since it is the average asymptotic

information content per symbol for an independent and identically distributed ( i.i.d. ) sequence of

random variables (thus, for a stochastic process). Even for simple stochastic processes, e.g. Markov

chains (which, in fact, can be interpreted as classical walks on weighted, directed graphs), the entropy

is not a suitable measure for the asymptotic per symbol information content. In information theory,

however, ther exists a generalization, which is a suitable measure for general stochastic processes: the

entropy rate. As classical walks are the textbook examples of Markov chains, for which the entropy

rate is a meaningful definition. It is a rather interesting question whether for quantum walks (which

are quantum Markov chains) the concept of entropy rate is applicable. In this thesis, we address this

question in detail.

This thesis is organized as follows. In Part I. we overview the literature, give the basic definitions, and

establish the context of the thesis. In Chapter 1 we review the most influential definitions of quantum

walks and some experimental schemes. Chapter 2 is devoted to define the entropy rate of stochastic

processes and also to give its most important properties on which we later rely. The next chapter outlines

the asymptotic theory of random unitary operations (RUO maps). Finally, in Chapter 4, we review some

interesting aspects of walks on percolation graphs and also give a brief review of the literature.

Part II. is devoted to our own results. In Chapter 5 we adapt the asymptotic theory of RUO maps

reviewed in Chapter 3 to the problem of quantum walks on dynamical percolation lattices. We introduce

a pure state ansatz approach in Chapter 6, which gives a direct physical meaning for the asymptotics of

RUO maps, considerably simplifying their asymptotic analysis. We also show that percolation quantum

walks benefit form the ansatz. In Chapter 7 we elaborate on the complete problem of percolation walks

on one-dimensional graphs using the newly given methods. After acquiring the complete solution for

the one-dimensional system, we study some notable cases of the two-dimensional problem in Chapter 8:

The Hadamard and Grover walks. Chapter 9 is devoted to study another disturbed quantum walk based

system, the periodically measured discrete time quantum walk in terms of the entropy rate. We develop

methods to perform the analysis and also compare different definitions of the entropy rate. Finally, we

summarize the new scientific results of the thesis.
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Chapter 1

Definitions of quantum walks

Quantum walks are always non-trivial generalizations of classical walks. The non-triviality is ensured

by the no-go lemma of Meyer [30]:

Lemma: “In one dimension there exists no nontrivial, homogeneous, local, scalar quantum cellular

automaton".

Consequently all non-trivial (useful) quantum walk definitions have to violate some of the conditions in

the above lemma. In this chapter we review the major types of quantum walks and their most important

properties. In Section 1.1 we review the discrete time quantum walk, that we will use later as the basis

of our own research. In Section 1.2 we give the definition of continuous time quantum walks, which is

particularly popular among those, who study quantum transport. In the next section another discrete

time model, the scattering quantum walk, is presented which is a straightforward model of computation

in quantum networks. In Section 1.4 we give Szegedy’s quantum walk which is based on the quantization

of classical Markov chains, and is widely used as a tool for the theoretical studies in quantum information

theory. Finally, in Section 1.5 we briefly sketch some basic experimental arrangements realizing quantum

walks.

1.1. Discrete time quantum walks

A discrete time random (classical) walk on a graph can be described by the following protocol: At

the beginning, the walker (particle) resides in a single (initial) vertex. Next, some random (stochastic)

process picks one from the immediate neighboring vertices. Following that, the walker is shifted to the

just picked new vertex. The repeated application of this algorithm is a discrete time random walk. The

most basic example is the unbiased walk of a particle on a one-dimensional integer lattice. Initially the

walker resides at the origin, labeled by 0. Next, a random process chooses from the nearest neighbors: in

this case the nearest neighbors are the sites ±1. The choice can be based on a fair coin toss. Following

the coin toss, we place the particle to its new position depending on the state of the coin: either to the

site labeled by +1, or to the site labeled by −1. Then, the protocol is repeated again and again: following

every coin toss, we move the particle. The properties of this textbook example is well known, e.g. if one

asks for the probability distribution of the position of the particle, the answer is a binomial distribution,

and asymptotically it is the Gaussian distribution.
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The discrete time quantum walk (QW) extends the previous classical model using the mathematical

apparatus of quantum mechanics. Similarly to the classical walk, a single iteration step of the QW is

split into two operations: the coin toss and the displacement. To define this system we give its Hilbert

space first. Given a d-regular graph (or lattice) G(V,E) we define a position Hilbert space spanned by

state vectors corresponding to the vertices of the graph:

HP = Span {|v〉P | v ∈ V } . (1:1)

Next, we use the fact that G(V,E) is a d-regular graph, i.e. that every vertex of G has d nearest neighbors:

We define an additional coin (or spin) Hilbert space using the d directions pointing to nearest neighbors

HC = Span {|c〉 | c ∈ [1..d]} . (1:2)

Thus, the total Hilbert space of the system is a composite one:

H = HP ⊗HC . (1:3)

We denote the Hilbert vectors of the position space by |v〉P , the coin space by |c〉 and the a vector on

the total Hilbert space by |v, c〉 ≡ |v〉P ⊗ |c〉. Throughout this thesis all matrixes are represented in this

natural basis, unless noted otherwise. Note that this construction breaks the scalarity in Meyer’s no-go

lemma by introducing the coin space.

Let us now move on to constructing the discrete time evolution on this Hilbert space. Mimicking

the classical discrete time walk, we should define a coin tossing operation first. As in the classical case,

the coin toss should not affect the position state (distribution) of the walker and also should be local.

Furthermore, quantum mechanics requires unitarity. Thus, a general coin toss operator has the following

form:

Γ =
∑
v∈V
|v〉P 〈v|P ⊗ Cv where Cv ∈ U(d) . (1:4)

In most cases the coin is assumed to be independent from the position:

Γ = IP ⊗ C where C ∈ SU(d) , (1:5)

where IP is the identity operator in the position space1. In this way, the homogeneity property of Meyer’s

lemma is kept. Throughout this thesis, we will always assume that the coin is position independent, unless

1 As the coin become homogeneous, the global phase of the coin will be neglected in the dynamics: SU(d) coins can be
used without losing generality.
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it is noted otherwise.

We now continue with the definition of the displacement operator, that is:

S =
∑
v∈V

∑
c∈[1..d]

|v ⊕ c, c〉〈v, c| . (1:6)

Here, the abstract sum v ⊕ c denotes the nearest neighbor of vertex v in direction c. As in the classical

case, the outcome of the coin toss determines the direction of the displacement. We note here that the

time required for the displacement is negligible for both the classical and quantum discrete time models,

thus the transition is considered to be instantaneous. Finally, a single time evolution step is defined as

U = SΓ = S (IP ⊗ C) . (1:7)

The actual discrete time quantum walk procedure is given by the repeated application of the single time

evolution step U

|ψ(t)〉 = U |ψ(t− 1)〉 = U t|ψ(0)〉 . (1:8)

We note that measurement is not included in the definition of the system, so the whole process is unitary,

and thus deterministic. We also note that this unitary time evolution definition is rather general, in some

cases even stricter (less general) definitions can cover all possible dynamics [145]. In case of discrete time

quantum walks, measurement usually means a position von Neumann measurement, i.e. the measurement

of the observable

P =
∑
v∈V

∑
c∈[1..d]

v|v, c〉〈v, c| . (1:9)

The first discrete time quantum analogue of the classical walk using an additional coin (spin) degree

of freedom was proposed by Aharonov et al [29]. However, that very protocol included a von Neumann

measurement, thus it is not a purely unitary process. Later, Meyer [30] have given a full unitary definition,

which we summarized above. Since the combination of the coin space and the coin operator is the key

driving mechanism of the discrete time quantum walk, we also refer to this model as the coined quantum

walk. We note that recently an analogous model, called the “coinless quantum walk" has also been

introduced [146]. This model can be understood as a coined quantum walk where the tensor product

form of the Hilbert space is not enforced and is actually hidden: unitary rotations simply act on position

states instead, breaking the homogeneity in Meyer’s no-go lemma.

In this thesis we focus on discrete time quantum walks. Some of their most important properties are

reviewed in the following.
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Figure 1:1. Comparison of the classical walk (dashed line) and the discrete time quantum walk (continuous line) on
a one-dimensional integer lattice after 100 time steps. Probabilities at the odd sites of the lattice are not plotted,
since for even number of steps the probabilities at all odd labeled sites are zeros. The data points are connected
to guide the eye, and to emphasize the interference fringes.

1.1.1. Basic properties, the one-dimensional Hadamard walk

Let us employ the definition given above to describe the motion of a quantum particle on a one-

dimensional integer lattice. The Hilbert space (cf. Eqs. (1:1)-(1:3) ) is a composite:

H = HP ⊗HC , (1:10)

where

HP = Span {|v〉P | v ∈ Z} , (1:11)

and

HC = Span {|L〉, |R〉} . (1:12)

Here, |L〉 and |R〉 represent the directions left (decreasing the position state index) and right (increasing

the position state index), respectively. According to Eq. (1:6), the displacement operator is given as

S =
∑
v∈Z

(
|v − 1, L〉〈v, L|+ |v + 1, R〉〈v,R|

)
. (1:13)

We represent the coin operator using the usual SU(2) parametrisation

C(n) = exp (−i (n · σ)π/2) , (1:14)
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where σ denotes the vector of the Pauli matrices. The typical textbook example of the one-dimensional

quantum walk is the one driven by the Hadamard coin:

CH =
1√
2

 1 −1

1 1

 , (1:15)

which we can obtain from Eq. (1:14) by choosing n = (0, 1/2, 0). This coin has an interesting property:

the magnitude of each of its elements is equal, consequently it shows a well defined classical correspond-

ence: Should one measure the position of the walker after each single timestep, the walk reverts to the

classical one-dimensional discrete time walk. Such coins are called balanced or unbiased. If one measures

a biased discrete time quantum walk after each step one will not obtain a classical walk2.

Since the definition of the system is homogeneous in space, i.e. translation-invariant, the quasi-

momentum of the particle is a good quantum number. Consequently, the time evolution simplifies

considerably in the momentum picture:

Ũ(k) = D̃(k) · C =

 e−i·k 0

0 ei·k

 · C . (1:16)

The position and momentum pictures are connected through the Fourier and inverse Fourier transform-

ations:

ψ̃(k, t) ≡
∑
v∈Z

ψ(v, t)ei(vk) (1:17)

and

ψ(v, t) =
1

2π

∫ 2π

0
ψ̃(k, t)e−i(vk)dk . (1:18)

Here, ψ(v, t) denotes the two-component (coin) spinor of probability amplitudes:

ψ(v, t) =

 〈v, L|ψ(t)〉

〈v,R|ψ(t)〉

 . (1:19)

The unitary (undisturbed) evolution of quantum walks exhibits interesting properties. The spreading

(average mean distance from the expected value) of the system is ballistic, thus, linear in time. On the

other hand, classical walks show diffusive spreading, i.e. a square-root dependence with respect to time

(number of steps). Thus, the quantum walk spreads quadratically faster. This is quite an usual but

2 The obtained classical process is not a walk in the sense that it is not a classical Markov chain, however it is still a
classical stochastic process (See Chapter 2). A similar quantum system is discussed in Chapter 9.
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Figure 1:2. Modeling scattering through a potential barrier (gray area) using a discrete time quantum walk.
Between positions 0 and 5 the Hadamard coin (1:15) is used. At the other positions the particle can fly without
scattering, thus the coin operator is the identity. The strength (height) of the potential barrier can be tuned with
the parameters of the coin.

expected property of quantum walks on regular lattices. We show the typical two-peaked quantum walk

distribution in FIG. 1:1. Naturally, the spreading also affects the so-called hitting time, which is the

expectation of the time it takes for the particle to reach a given vertex. On regular lattices the hitting

times are usually quadratically lower, i.e. quantum walks hit quadratically faster. On some special graphs

the hitting time of a quantum walk can even be exponentially larger or smaller compared to the classical

hitting times [35, 147, 148].

The ballistic spreading also affects the return probability — the so-called Pólya-number — of the walk

[149]. While in the classical case the Pólya number is determined by the dimension of the underlying

graph, in quantum walks the graph, the coin and also the initial state affect the Pólya number [150–155].

We have to note here that in the definition of all these probabilities — hitting times and Pólya numbers

— the measurement and the preparation process must be taken into account.

One can also observe quantum interference effects in quantum walks. The interference fringes between

the peaks of a typical two-peaked distribution is one such place, and it is arising from the interference

between the left and the right propagating parts of the wave function. Also, one might employ quantum

walks to model scattering through potential barriers, or even single- and double-slit experiments [156].

This scattering behavior is illustrated in FIG. 1:2.
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1.1.2. Two-dimensional quantum walks

This section is devoted to the description of the two-dimensional quantum walk model [80]. We will

focus on the two-dimensional Cartesian lattice (square lattice), however, there are several other two-

dimensional graph structures of interest in the research of quantum walks, e. g. the triangular,the

honeycomb and the Kagome lattices [V] [50, 157, 158].

The position space is spanned by state vectors with two integer indices, corresponding to the coordinate

labels of the square lattice:

HP = Span
{
|x, y〉P | (x, y) ∈ Z2

}
. (1:20)

The coin space is four-dimensional because a single lattice point has 4 immediate neighbors. However,

the definition of the coin basis states and the corresponding unit shifts are ambiguous in the literature.

It is possible to define the shifts to represent hopping in the diagonal direction, e.g. |x, y〉 → |x+1, y+1〉.

The advantage of this approach is that the corresponding step operator has the form of S ⊗ S, i.e. the

tensor product of steps of one-dimensional quantum walks. Thus, such definition might allow us to see

the single two-dimensional particle as two non-interacting one-dimensional particles, as long as the coin

also has a tensor product structure. On the other hand, shifts can represent displacement to the actual

nearest neighbor, e.g. |x, y〉 → |x + 1, y〉. In this thesis, we will follow this latter approach. Thus, the

coin space is defined as:

HC = Span {|L〉, |D〉, |U〉, |R〉} . (1:21)

A single step of the time evolution is given by

U = S(IP ⊗ C) , (1:22)

where

S =
∑

(x,y)∈Z2

(
|x− 1, y, L〉〈x, y, L|+ |x, y − 1, D〉〈x, y,D|

+|x, y + 1, U〉〈x, y, U |+ |x+ 1, y, R〉〈x, y,R|
)
, (1:23)

and C ∈ SU(4). We note that 4 × 4 matrices acting on the coin space will be represented in the

|L〉, |D〉, |U〉, |R〉 basis. The boundary conditions (topology) of the underlying graph are reflected in

the displacement operation S, e.g. periodic boundary conditions (tori) are considered by taking modulo

addition and subtraction operations in Eq. (1:23).
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Figure 1:3. Position distribution of the Hadamard walk driven by the coin (1:24) on the Cartesian square lattice
after 30 steps. The initial state of the system was |ψ〉 = |0, 0〉P ⊗ (|L〉 − i|D〉 − i|U〉 − |R〉) /2.

Let us show the three most prominent examples of the two-dimensional quantum walks. The first is

the walk driven by the 4× 4 Hadamard coin, i.e.:

C2D
H = CH ⊗ CH =

1

2


1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1

 . (1:24)

The key feature of the Hadamard walk is that it is similar to a two-particle one-dimensional quantum

walk, its distribution is dominated by four, ballistically moving peaks. We illustrate this walk on FIG. 1:3.

The next is the Fourier walk, driven by a discrete Fourier transform matrix:

CF =
1

2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 . (1:25)

This walk exhibits a slowly propagating central peak. Also, for a family of initial states |ψRing〉 =

|x0, y0〉P ⊗ (a|L〉+ b|D〉+ a|U〉 − b|R〉), (with |a|2 + |b|2 = 1/2) the central peak vanishes, and a ring like

distribution emerges. This walk is illustrated in FIG. 1:4.
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Figure 1:4. Two possible position distributions of the Fourier walk driven by the coin (1:25) on the Cartesian
square lattice after 30 steps. The plot on the left shows a typical distribution, which is dominated by a slowly
propagating central peak. The initial state of the system was |ψ〉 = |0, 0〉P ⊗ (|L〉+ |D〉+ |U〉+ |R〉) /2. The plot
on the right shows the ring like distribution we get by using |ψ〉 = |0, 0〉P ⊗ (|L〉+ |D〉+ |U〉 − |R〉) /2 as the initial
state.

Finally, we show the Grover walk, which is driven by the Grover diffusion operator:

CG =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 . (1:26)

The Grover walk exhibits some rather interesting behavior. Almost all spatially local initial states remain

spatially local (trapped) during the whole time evolution, i.e. the probability of finding the particle at

the origin never decays to zero. This characteristic phenomenon is called trapping or localization [80, 81].

However, for a well defined initial state |ψNT〉 = |x0, y0〉P ⊗ (|L〉 − |D〉 − |U〉+ |R〉) /2 this localization

type of behavior is avoided; the walk exhibits a ring like distribution. We illustrate this behavior in

FIG. 1:5. Furthermore, the Grover walk serves as the basis for several quantum walk based search

algorithms [47–53]. We overview one such search algorithm in the next section.

1.1.3. Quantum search

Quantum walks — similarly to classical walks — are suitable for performing and modeling searches

on graphs. It is well known in the field of quantum information that the Grover algorithm [159] provides

quadratic speedup in terms of oracle queries over any classical algorithms. That corresponds to O(
√
N)

expected queries in the quantum case, in contrast to the expected number of O(N) queries for classical

algorithms (Turing machines). It is shown in the literature of quantum walks that this quadratic speedup
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Figure 1:5. A typical position distributions of the Grover walk driven by the coin (1:26) on the Cartesian
square lattice after 30 steps. The plot on the left shows the characteristic peak of the trapping phenomena:
during the whole time evolution this peak never decays to zero. The initial state for the plot on the left was
|ψ〉 = |0, 0〉P ⊗ (|L〉+ |D〉+ |U〉+ |R〉) /2. The plot on the right shows the ring like distribution, which avoids the
trapping effect for a single, well-defined initially localized state |ψ〉 = |0, 0〉P ⊗ (|L〉 − |D〉 − |U〉+ |R〉) /2

can be achieved by using a quantum walk model, which translates into finding a marked vertex (or even

more marked vertices in a generalized case) on a graph structure [47]. In the discrete time quantum

walk model the “mark" on the element is given by a modified coin operator. Here, we briefly review a

quantum walk based search performed on a torus [48–50]. We note that this particular algorithm does

not provide the full quadratic quantum speedup, instead, it has a O(
√
N logN) runtime. However, since

it uses a simple two-dimensional graph structure, it is rather convenient to use it as an illustration for

the quantum walk based searches.

Let us employ the definitions of the two-dimensional discrete time quantum walk model from the

previous section. We choose the underlying graph to be a
√
N ×

√
N torus, i.e. a Cartesian lattice with

N sites (database elements) and periodic boundary conditions. The coin operator of the walk is a slightly

modified version of the Grover coin:

CS = CG(σx ⊗ σx) =
1

2


1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

 . (1:27)
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Figure 1:6. Search on a 20 × 20 (N = 400) torus. The plots show the probability distribution at different time
steps. The data is illustrated with a joined 3D mesh (texture) to guide the eye. The marked state is the |5, 5〉P .
At the beginning (t = 0) the initial state is a uniform superposition of all states. During the walking process,
constructive interference forms at the marked vertex (t = 5), and it reaches its peak for the first time at step
t = 29 ≈

√
2N . Following that, the peak decreases, and even drops below the probability value of any unmarked

peaks, reaching its minimum around t = 64.

50 100 150 200

0.05

0.10

0.15

0.20

0.25

Figure 1:7. The probability of finding the single marked vertex on a 20 × 20 (N = 400) torus. The first peak
appears after

√
2N steps, i.e., that is the optimal time to perform the measurement. The height of the peak is

O(1/ logN). The data points are joined to emphasize the periodicity. The length of a period is ∼ π
√
N steps.



18 1.2 Continuous time quantum walks

In search algorithms we mark vertices by using a special coin. In this case the marker coin is

CM = −σx ⊗ σx =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

 . (1:28)

Thus, the full coin toss operation is given as:

Γ =
∑
x 6∈M
|x〉P 〈x|P ⊗ CS +

∑
x∈M
|x〉P 〈x|P ⊗ CM , (1:29)

where M is the set of marked vertices. Here we consider only a single marked vertex, thus |M | = 1. The

initial state of the search os search is:

|ψS〉 =
1

2
√
N

√
N−1∑

x,y=0

∑
c={L,D,U,R}

|x, y, c〉 . (1:30)

It is proven [49, 50] that after
√

2N steps the probability of finding the walker at the marked vertex

reaches a peak. However, we have to note that the probability of finding the particle at the marked

vertex is not high enough. In fact, scales as O(1/ logN) with the number of total elements (vertices). In

order to achieve the practically useful probability of O(1) one can employ the amplitude amplification

method [160]. Thus, after O(
√

logN) repetitions the probability of finding the marked vertex is raised

to O(1). In summary, the total runtime of the algorithm is O(
√
N logN). We illustrate this search

algorithm in a numerical example in FIG. 1:6 and FIG. 1:7.

1.2. Continuous time quantum walks

In discrete time walks there is a well-defined time instance, when the transition of the particle (hop-

ping) happens instantaneously. However, in some physical processes this transition is not sharp or

periodic. For example, only the rate of transitions are known, that is the number of transitions (steps) in

a given period of time. In such cases a continuous time description is desirable. For classical walks there

is a straightforward connection between the discrete time and the continuous time version. The key is to

take the limiting case of the discrete time model by simultaneously going with the number of steps and

with the length of steps (in space), to infinity and to zero, respectively. The result is a diffusion process,

where, from a single initial δ distribution a Gaussian distribution emerges, which spreads with the square

root of time. However, there are two key differences compared to the discrete time version: First, after
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even infinitesimally small time the particle will have an exponentially low, but finite probability to “jump"

far from its initial position. Second, the positions are not discrete anymore. We note that the method

outlined above — taking the simultaneous limit, i.e. by going with the number of steps to infinity, and

with the length of steps to zero — can be performed on discrete time quantum walks, and will result in

a so-called weak limit [161–163].

Continuous time quantum walks [31, 34] have a different approach. The simple discrete graph structure

is kept, but the transition time is not sharp like in its discrete time counterpart — the time evolution

is continuous, not stroboscopic. Let us give the formal definition in the following. The Hilbert space of

continuous time quantum walks on a given G(V,E) undirected graph is spanned by vectors corresponding

to the vertices of the graph

H = Span {|v〉 | v ∈ Z} , (1:31)

i.e. it coincides with the position space of discrete time quantum walks. The time evolution is governed

by a Hamiltonian given by its elements as

〈i|H|j〉 =


−γ if there is an edge between vertices i and j

dγ if i = j where d is the degree of the vertex

0 otherwise.

(1:32)

Here, γ ∈ R, γ > 0 is the rate of the continuous time quantum walk. We note that the off-diagonal

elements of the Hamiltonian is the adjacency matrix of the graph G(V,E) (up to the rate γ). Also, one

can view the Hamiltonian as a discrete Laplacian. The time evolution is given as the formal solution of

the time-independent Schrödinger equation, i.e. as the exponential of the Hamiltonian:

|ψ(t)〉 = exp (−iHt) |ψ(0)〉 . (1:33)

We note that similarly to the classical case the walker has a finite, exponentially small probability to

appear far from the origin. If we consider a continuous time quantum walk as a cellular automaton by

restricting it to discrete time steps, we can see that it breaks the locality in Meyer’s no-go lemma. This

non-locality shows that there are some important differences in the definitions of the discrete time and

continuous time models. In the discrete time case only the unitary form of the time evolution operator

is defined, and the graph structure is encoded through the displacement operator S ( see Eq.(1:6) ).

In the continuous time case, the Hamiltonian reflects the underlying graph structure. Consequently,

should one construct any unitaries from such a Hamiltonian, it would contain non-nearest neighbor

interactions (jumps). In fact, a similar analogy holds for the discrete time case too: should one deduce
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Figure 1:8. Comparison of the position distribution of a continuous time quantum walk (thick line) with a discrete
time quantum walk (thin line) on a one-dimensional integer lattice at t = 100. Both models exhibit ballistical
spreading. We have chosen γ = 0.3827 as for this rate the variance of the two distributions coincide. For the
discrete time model, only the even sites are plotted, because for even number of steps the probabilities at all the
odd labeled sites are zero. The plotted data are represented by connected lines to guide the eye, and to emphasize
the interference fringes.

a quasi-Hamiltonian from the unitary time evolution operator, one would find that the Hamiltonian

contains non-nearest neighbor interactions, too. The resolution of the apparent contradiction is that the

exponential “tail" of the wavefunction vanishes due to destructive interference.

Another difference is that the discrete time variant inherently contains the additional coin degree

of freedom, whereas continuous time quantum walks are defined without a coin. Connection between

discrete time quantum walks and continuous time quantum walks exists, albeit it is non-trivial [164–166].

The continuous time quantum walk model has similar properties as its discrete time counterpart.

In fact, it also exhibits ballistic spreading on regular lattices, and is suitable for designing quantum

algorithms, e.g. searches [167, 168]. For comparison, we illustrate both models on the line in FIG. 1:8.

By design, continuous time quantum walks are suitable for modeling transport of single excitations on

undirected graphs [39–41, 44]. Also, by adding imaginary terms to the diagonal of the Hamiltonian,

sources and absorbers (detectors for a continuous weak measurement) can be added in a straightforward

manner [169].

1.3. Scattering quantum walks

Quantum walks naturally represent the spreading of a wave packet on a quantum network. In most

of the cases the graph G(V,E) corresponding to a quantum network is viewed as vertices and edges

representing the positions where the walker can reside and the possible unitary transitions (movement)

between such sites, respectively. However, there is another approach for quantum walks where the role

of these two sets are reversed: the so-called scattering quantum walks [32, 170, 171]. In this section we

briefly review this model.

Given a G(V,E) undirected graph, the Hilbert space of the walk is spanned by:

H = Span {|i, j〉 | i, j ∈ V where (i, j) ∈ E} , (1:34)
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i.e. by pairs of vertices connected with an edge. Note that a single undirected edge connecting two sites

a and b gives two basis states: |a, b〉 and |b, a〉. That is, an undirected edge is viewed as two directed

edges connecting a pair of sites. We note that like in the discrete time quantum walk model, this model

breaks the scalarity in Meyer’s no-go lemma. The action of a single discrete time evolution step on a

state is defined as:

U |a, b〉 = r(a,b)|b, a〉+
∑

c∈V where (b,c)∈E

t(a,b)(b,c)|b, c〉 , (1:35)

that is, the particle suffers a backscattering with amplitude r(a,b), and it is scattered forward with

amplitudes t(a,b)(b,c). Unitarity is ensured by selecting proper complex r and t coefficients.

The whole process can be understood more clearly using an interferometric analogy. The vertices

represent optical multiports while the edges are the paths connecting them. The two quantum basis

states corresponding to an (undirected) edge represent the two directions: |a, b〉 means that a photon

propagates towards multiport b, while |b, a〉 represents a photon flying towards multiport a on the same

path. Naturally, these two photons cannot interfere (scatter) with each other. To summarize, the

quantum walk process describes a single photon passing through the network of optical multiports. The

advantage of this approach is that it can be applied to any undirected graph structure, and even to some

special directed ones. Like all quantum walk models, this scattering approach is viable for constructing

quantum algorithms [52, 172].

Let us illustrate this model on a one-dimensional integer lattice. The Hilbert space can be given in a

simple form

H = Span {|i, i+ 1〉 , |i+ 1, i〉 | i ∈ Z} . (1:36)

The most straightforward multiport between two neighboring edges is a 50/50 beamsplitter, described

by the Hadamard matrix:

B =
1√
2

 1 −1

1 1

 . (1:37)

Thus, the unitary time evolution operator has the form:

U =
∑
i∈Z

1√
2

(
|i+ 1, i+ 2〉〈i, i+ 1|+ |i+ 1, i〉〈i, i+ 1|+ |i, i− 1〉〈i+ 1, i| − |i, i+ 1〉〈i+ 1, i|

)
. (1:38)

We illustrate the probability distribution of this scattering walk example in FIG. 1:9. We note here that

on regular graphs the scattering walk is unitarily equivalent with a well constructed discrete time quantum
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Figure 1:9. The position distribution of a scattering quantum walk on a network of 50/50 beamsplitters, described
by the matrix B of Eq. (1:37). The walker took 100 steps and started from the state |0, 1〉, i.e. a photon flying
to the right. The data points in the plot are joined with a line to guide the eye and to emphasize the interference
fringes.

walk. It is easy to illustrate this equivalence on the current one-dimensional example by relabeling the

states as

|i, i+ 1〉 → |i+ 1, R〉

|i+ 1, i〉 → |i, L〉 , (1:39)

for all i ∈ Z and using the transpose of B as the coin operator: The resulting walk is the one-dimensional

discrete time Hadamard walk of Section 1.1.1. One of the major differences between the two approaches is

the position measurement process: although in Eq. (1:39) the states of the scattering walk |i, i+1〉, |i+1, i〉

represent the same edge, thus the same position, the corresponding discrete time quantum walk states

|i + 1, R〉, |i, L〉 are at different position (vertex). Consequently, measuring the edges as positions in

the scattering model and measuring the vertices as positions in the discrete time model will produce a

different probability distribution, albeit there is a unitary equivalence between them.

1.4. Szegedy’s quantum walk

A Markov chain is a discrete time stochastic process without a memory. All Markov chains can be

viewed as classical walks. In fact, time invariant Markov chains can be described through stochastic

matrices P , whose elements satisfy
∑

m Pn,m = 1. This matrix can also be viewed as an adjacency

matrix of a directed weighted graph, which is the underlying position graph of a classical walker. Then,

a single step of time evolution is given by the application of P to the probability distribution (classical

state) on the vertices.

The quantization of such classical walks (Markov chains) is not trivial. However, Szegedy provided

[33] a robust mathematical construction for quantizing such systems. Such walks are called Szegedy’s

quantum walks. In this thesis we show a simplified way to construct such walks, and we stress that

consequently this approach is not as general as the original definition given by Szegedy in [33].
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The first idea comes from the construction of discrete time quantum walks: to successfully construct

a discrete time (nearest neighbor) unitary process some non-trivial add-ons are needed. In the case of

discrete time quantum walks that add-on is the coin space. However, in Szegedy’s walk the position space

is doubled, thus once again, the scalarity is broken in Meyer’s no-go lemma. Secondly, the time evolution

somehow resembles the reflection in the Grover search. In fact, the time evolution of Szegedy’s walk

consists of reflections between these doubled position spaces. Lastly, the position measurement involves

tracing out one of the position spaces.

Let us present the definition. The single position space is spanned by the states corresponding to the

vertices V of the graph G(V,E) which are from the index set for Pn,m. Thus the full (doubled) Hilbert

space is given by

H = Span {|n,m〉 |n,m ∈ V } . (1:40)

Note that this Hilbert space can be viewed as the composite Hilbert space of two single particles with

state vectors |n〉1 ⊗ |m〉2 = |n,m〉. For better understanding we will use this two-particle picture. To

give the time evolution, first we define quantum states that encode the elements of P :

|φ(n)〉 =
∑
m∈V

√
Pn,m|n,m〉 . (1:41)

Next, a reflection is defined on these states

F = 2
∑
n∈V
|φ(n)〉〈φ(n)| − I . (1:42)

It is straightforward to see that F is unitary, and its act on the first part (first particle) of the position

space is identity:

Tr2 (F ) =
∑
n,n′,m

(
〈n,m|F |n′,m〉

)
· |n〉〈n′| = I1 , (1:43)

that is, it only affects the second abstract particle. To complete the time evolution, an additional step is

needed: a reflection representing a P which acts on the first particle. This can be achieved by swapping

the two particles through a generalized swap operation:

W =
∑
m,n

|m,n〉〈n,m| . (1:44)
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Figure 1:10. The position distribution of Szegedy’s walk on the line after 20 steps. The corresponding classical
Markov chain is given by a matrix with elements Pm,m+1 = Pm,m = Pm,m−1 = 1/3 for all m ∈ Z, i.e. the walker
would step to the left, to the right or stay at its current position with the same probability. The two small outward
propagating peaks at sites ±16 are responsible for the ballistic spreading of the quantum particle. The discrete
data points in the plot are connected to guide the eye.

Finally, the complete form of the unitary single step time evolution operator is:

U = FW . (1:45)

We illustrate this walk in FIG. 1:10.

Szegedy’s walk is a very powerful mathematical tool suitable for quantizing general classical Markov

chains. In contrast, constructing quantum walks on directed or weighted graphs using the models dis-

cussed in the previous sections are not straightforward, and might be possible only with radical changes

in their definition. Due to the very general definition Szegedy’s walk is a handy mathematical model used

mainly in quantum information theory for designing quantum algorithms, and proving their efficiency.

Like all other types of quantum walks, Szegedy’s walk is also capable of performing a quadratically

faster search [33]. However, we note that due to the doubling of the position space, and the rather ab-

stract reflection concept included in the time evolution operator, Szegedy’s walk is quite hard to realize

experimentally and up to date there are no known experiments focusing on this very model.

1.5. Optical realizations

The optical realization of quantum walks were always appealing, since they consist of a straightforward

way to illustrate and construct physical systems (experiments) simulating quantum walks. The most

straightforward concept is the optical Galton board [94, 119, 120], which is an interferometric analog of

the mechanical Galton board: the spikes are replaced with beamsplitters, and photons propagate instead

of balls. A single photon running through the Galton board goes through constant splitting and re-joining

i.e. self-interference, and in the end it realizes a discrete time quantum walk. The very drawback of using

optical Galton boards is that the number of optical elements (beamsplitters) needed scales exponentially
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Figure 1:11. The optical Galton board implementation of quantum walks on the line. The thick lines represent
beamsplitters. The advantage of this setup is that it is easy to understand, and also it is easy to tune the individual
parameters of the walk, i.e. the coins (beamsplitters) can be different in space and time. In this scenario the number
of steps is fixed — the arrangement in the figure shows a 5 step quantum walk. With the number of steps, the
number of needed optical elements (thus, resources) increases exponentially, thus this implementation is not really
practical.

with the number of steps the quantum walker takes3. We illustrate this arrangement in FIG. 1:11.

A more promising approach comes from scattering quantum walks ( See Section 1.3 ): a photon

propagating through a one-dimensional array of beamsplitters would make a suitable experimental scen-

ario [94], where the number of optical elements only scale linearly with the number of steps. However,

here the detection of the photon is not trivial: a possible solution is to weakly couple the photon out

from the interferometer at every positions, and detect it there. However, the static outcoupling intro-

duces further uncertainty when it comes to the numbe of steps taken, the measurement (which disrupts

the walk process, since the photon is absorbed) might happen after any number of unitary steps and

cannot be fixed like in the Galton board scenario. We illustrate this possible experimental configuration

in FIG. 1:12.

Schreiber et al. [122] have given an approach, which circumvents the need for more and more optical

elements with growing number of steps. Let us shortly review this experimental scenario here. The first

idea is that the position of the walker is encoded in the time of arrival of a single photon. That is, a single

detector detects the photon and the time of the detection gives the position value of the walker. The coin

state of the particle is encoded in the polarization of the photon: vertical polarization corresponds to the

coin state |L〉 and horizontal to |R〉. First, the photon flies through a half-wave plate which carries out

3 Using exponential physical resources to simulate quantum walks is rather inefficient. Considering finite numerical preci-
sion, even just brute-force classical computer simulations would use resources that scales polynomially with the number
of steps.
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Figure 1:12. The scattering approach to the quantum walk on the line. The photon scatters through a linear
system of beamsplitters (thick lines), while other beamsplitters with high transmittivity (gray thick lines) send the
photon to detectors. In this arrangement the number of elements needed scales linearly with time. (However, one
can consider reflective or periodic boundary conditions, where the number of elements might be kept fixed.) On
the other hand, since the detectors are built-in elements of the arrangement and they perform a measurement at
every time step, the time the photon spends in the interferometer is also not-fixed, i.e. measurement (detection)
might happen after any number of steps.

the coin operation

C =

 cos 2θ sin 2θ

sin 2θ − cos 2θ

 . (1:46)

Here θ is the rotation angle of the half-wave plate relative to one of its optical axes. Next, the photon

is split according to its polarization by a polarizing beamsplitter. The vertically polarized part ( |L〉C

) enters a delay loop (a considerably longer optical path) that adds a time-delay, while the horizontal

part ( |R〉C ) flies through without the delay. The two parts of the wavefunction are eventually joined

by a polarizing beamsplitter. This procedure corresponds to a single step of a quantum walk, where the

time-of-arrival of the photon encodes a single step. We illustrate this in FIG. 1:13.

The key idea is that the repetition of a single step can be carried out by feeding back the output

of the interferometer to its input. In this way the walker can take several steps without adding more

optical elements. The feeding back is actually performed through a beamsplitter: One of the inputs

and outputs of the beamsplitter are connected to the single-step interferometer, while the other input is

the port where single photons enter the arrangement and the other output port is where the detector is

placed. The complete arrangement scheme is given in FIG. 1:14. Like in the scattering example given

above, the number of steps taken is not fixed, since the detection (outcoupling through the beamsplitter)

is static, i.e. no one can guarantee that a photon entering the circuit will take a well defined number of

steps before it is measured. This is the very drawback of this experimental setup. The time of detection

(the amount of time that a photon spent in the interferometer) naturally corresponds to the number of

steps taken through the walk, and on a finer timescale it gives the position of the walker.

The setup is quite flexible as the number of optical elements used are quite low, and it is remarkably
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Figure 1:13. A single step of the delay-loop experiment. The superposed photon of the first step arrives from the
left: its internal state (polarization) encodes the coins state, while the arrival time encodes the position. First, the
half-wave plate realizes a rotation of the polarization, thus a coin operation ( See Eq. (1:46) ). Next, a polarizing
beamsplitter splits the signal and the vertical |L〉C part suffers a delay which corresponds to a step to the left.
(Consequently, the non-delayed flight of the horizontal |R〉C part corresponds to a step to the right.) The two
parts are joined by a polarizing beamsplitter, and the step is finished. This figure is taken from [122].

Figure 1:14. The setup of the delay-loop experiment. The pulse-operation laser is attenuated to a single-photon
level via a neutral density filter (ND). It is followed by a polarizing beamsplitter (PBS), half-wave plate (HWP)
and quarter-wave plate (QWP) which prepare the initial state of the system. The photon enters the quantum
walk interferometer through a beamsplitter (BS). Also through the same beamsplitter the photon walking in the
interferometer might exit and be detected at the avalanche photodiode (APD). This figure is taken from [122].

easy to change the coin operator. For example, with active optical elements, the coin can be changed

throughout the walking process, thus even open quantum walks can be studied with this setup [123].

Also, by adding more delay loops, thus introducing new timescales at the detection, the setup can be

extended to simulate higher dimensional walks [124].





Chapter 2

Entropy rates of stochastic processes

2.1. Definition of the entropy rate

It is well known [141] in information theory that the Shannon entropy

H(X) = −
∑
x

p(x = X) log2 p(x = X) (2:1)

quantifies the average information content of a random variable X. Here, by p(x = X) we denote

the probability that X takes the value x. For a sequence of independent and identically distributed

(i.i.d.) random variables Xi the total information content grows linearly with the addition of new

random variables, and equals n ·H(X), where n is the total number of random variables. This statement

is established by the asymptotic equipartition property. We stress that the Shannon entropy is only

applicable for the special sequences satisfying the i.i.d. criteria.

In general, in an indexed sequence of random variables X = X1 . . . , Xn, — called a stochastic process

— the random variables are not necessarily identically distributed and independent. In this case the

entropy rate

H(X ) = lim
n→∞

1

n
H (X1, X2, . . . , Xn) (2:2)

replaces the entropy in the asymptotic equipartition property. In other words, it describes the average

asymptotic information content of a stochastic process per sample. Here we note that usually the index

of a stochastic process is viewed and referred to as time. One can expand the previous formula using the

definition of the joint entropy

H(X ) = lim
n→∞

1

n

∑
x1,...,xn

p(x1 = X1, . . . , xn = Xn) log2 p(x1 = X1, . . . , xn = Xn) . (2:3)

In its most general form the entropy rate can be quite hard to determine. However, for special, but still

physically relevant cases, the definition can be simplified considerably.

A stochastic process is called stationary if any subset of the sequence of random variables it is invariant

under time shift, that is

p(Xn1 = x1, . . . , Xnk
= xk) = p(Xn1+l = x1, . . . , Xnk+l = xk) . (2:4)
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for all k, l-s and n1 < n2 < · · · < nk. In physics, such stationary processes typically arise as solutions of

time independent differential equations. A quantity related to the entropy rate can be defined as:

H ′(X ) = lim
n→∞

H (Xn|Xn−1, . . . , X1) . (2:5)

It can be proven for stationary processes [141] that if the latter limit exists, then the limit giving the

entropy rate (2:2) also exists and H ′(X ) = H(X ). Thus, for time stationary processes Eq. (2:5) can be

used to compute the entropy rate.

A Markov chain is a stochastic process satisfying

p(Xi+1 = xi+1|Xi = xi) = p(Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, . . . , X1 = x1) , (2:6)

i.e. the next random variable of the process only depends on the current random variable — the system

is memoryless. Since Xi+1 only depends on the current random variable Xi, we can call it the state of

the system at time i. The connection between two consecutive states can be described by a transition

matrix

P
(i)
jk ≡ p(Xi+1 = j|Xi = k) , (2:7)

which is a stochastic matrix by construction

∑
j

P
(i)
jk =

∑
j

p(Xi+1 = j|Xi = k) = 1 . (2:8)

If a Markov chain is described by a single transition matrix P , it is called time-homogeneous.

Let us calculate the partial entropy rate (i.e. Eq. (2:2) evaluated for finite n-s)

H(n,X ) =
1

n
H(Xn, . . . , X1) (2:9)

for time-homogeneous Markov chains.

H(n,X ) =
1

n

[
n∑
k=2

H(Xk|Xk−1, . . . , X1) +H(X1)

]
=

1

n

[
n∑
k=2

H(Xk|Xk−1) +H(X1)

]

=
n− 1

n
H(Xn|Xn−1) +

1

n
H(X1) . (2:10)

Thus, the entropy rate is given as

H(X ) = lim
n→∞

H(n,X ) = lim
n→∞

H(Xn|Xn−1) = lim
n→∞

H(Xn|Xn−1, . . . , X1) = H ′(X ) . (2:11)
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Hence, if either H(X ) or H ′(X ) exists then the other exists, too. Consequently, one can calculate the

entropy rate of time-homogeneous Markov chains by using Eq. (2:5).

A Markov chain is irreducible if all states are reached in finite time from any initial states. An

irreducible and aperiodic stationary Markov chain has a unique stationary (asymptotic) state:

µP = µ . (2:12)

Note that in information theory the stochastic matrices are the transpose of the stochastic matrices used

in statistical physics, that is the unique stationary distribution is a left eigenvector with eigenvalue one.

One can see, that the entropy rate of irreducible time-homogeneous Markov chains can be calculated as

H(X ) = lim
n→∞

H(Xn|Xn−1) = −
∑
i,j

µiPij log2 Pij . (2:13)

In the following we review some basic textbook examples to give a better view on the concept of entropy

rate.

2.2. Examples

The first example of the entropy rate is the one leading back to the Shannon entropy. Let us investigate

the entropy rate of a stochastic process consisting of a sequence of i.i.d. random variables. In terms of the

joint probability distribution: p(X1 = x1, X2 = x2, . . . , Xn = xn) = p(X1 = x1)p(X1 = x2) · · · p(X1 =

xn). Employing the definition of Eq. (2:2)

H(X ) = lim
n→∞

1

n
H (X1, X2, . . . , Xn) = lim

n→∞

∑
n

1

n
H(X1) = H(X1) . (2:14)

This is where we have started: The entropy growth (entropy rate) of the sequence of i.i.d. random

variables per new random variable is constant, and is given by the Shannon entropy of a single random

variable.

The next typical textbook example is the random walk on a weighted simple graph. A weight Wi,j

between vertices i and j is proportional to the probability that the walker passes through it. First, a

stochastic matrix must be defined using the weights:

Pij =
Wij∑
kWik

. (2:15)

We again note that this matrix is the transpose of the stochastic matrices used in physics. Next, a

stationary distribution µ satisfying µP = µ must be determined. We will assume that this distribution
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is unique. Then, by using Eq. (2:13) the entropy rate can be calculated.

It is easy to see that in some cases the entropy rate can be calculated in a more straightforward manner

using other symmetries of the system. Let us consider the unbiased one-dimensional discrete time classical

walk. In this model, from every position, the particle will hop to the left or to the right with probability

1/2. Since the system is infinite, the method we have described above is not straightforward to follow.

However, one can see that the translational invariance of the system helps us: in terms of the stochastic

process, it is wiser to encode the differences of subsequent positions (±1) rather than the actual discrete

positions. Exploiting this, we can easily derive the corresponding stochastic matrix

P =
1

2

 1 1

1 1

 . (2:16)

It is easy to see that this stochastic process has the entropy rate of 1 bit. Alternatively, one could argue

that the random drive of an unbiased homogeneous discrete time classical walk is a toss of a fair coin.

Consequently the entropy rate of the walk is the same as the coin toss, thus 1 bit.



Chapter 3

Asymptotics of random unitary operations

3.1. Random unitary evolution of quantum Markov chains

Quantum operations represent a versatile approach to describe general time evolution of quantum

states living on a Hilbert space H. That is, they can describe open system time evolution (decoherence,

dephasing, decay through environmental noise) and also can include measurements. A common way

to mathematically specify a quantum operation M : B(H) → B(H) is through the so-called Kraus

representation:

M(ρ) =
∑
i

AiρA
†
i , (3:1)

where

∑
i

A†iAi ≤ I . (3:2)

By B(H) we denote the space of bounded operators acting on the Hilbert space H. Note that such

evolution of quantum states happens without any memories, thus it describes a quantum Markov chain:

a quantum evolution, where the next state depends only on the previous. These quantum operations

are widely used in various fields of quantum information theory, e.g. describing quantum communication

channels, entanglement witnesses or probabilistic cloning. The most notable property of such operations

is the complete positivity, i.e. the joined density operator of the system in question with any environment

(ancilla) must remain positive under the quantum operation.

A special case of quantum operations is the random unitary operation (RUO map) [138–140]. RUO

maps describe a norm (trace) preserving open system time evolution: from a set of unitaries some

inherently classical random process chooses a single unitary which evolves the system. Since the inherent

random nature of the process, the expected outcome is an incoherent mixture of the states corresponding

to all possible selections weighted with the probability of choosing the given unitary. Described formally,

RUO maps are given as:

R(ρ) =
∑
i

piUiρU
†
i , (3:3)

where
∑

i pi = 1. It is straightforward to see that RUO maps are trace preserving and their Kraus
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operators can be defined as Ai =
√
piUi.

RUO maps are quite useful to describe the open evolution of quantum states where some unpredictable

classical process is present. For example, one can imagine the random interaction of quantum particles

(gas) in a box [138]: the collision of particles is described by a unitary, however the particles suffer

frequent and unpredictable collisions. Thus their time evolution is best described by a RUO map.

3.2. Properties and asymptotics of RUO maps

In this section we review the most important properties of, and the asymptotic method for RUO maps

[138–140] on which we will later rely. By construction RUO maps incoherently mix different quantum

states. When one considers a time evolution driven by a single RUO map, the purity of the quantum

state cannot increase. Therefore, the von Neumann entropy of subsequent states cannot decrease. In

finite systems the maximally mixed state (which is proportional to the identity operator) represents a

lower bound for purity and an upper bound for the von Neumann entropy. Consequently, under the

repeated application of a RUO map, asymptotically a set of isentropic quantum states is achieved4.

Thus, any quantum state ρas from this set satisfies:

S (ρas) = S (R (ρas)) , (3:4)

where S is the von Neumann entropy. Employing the definition of Eq. (3:3) and also the property that

the von Neumann entropy does not change under unitary operations we get, that:

∑
piS

(
UiρasU

†
i

)
= S (ρas) = S (R (ρas)) = S

(∑
i

piUiρasU
†
i

)
. (3:5)

Let us use the concavity of the von Neumann entropy S; which says that the entropy of a mixture is

greater than or equal to the entropy of the parts:

S(p1ρ1 + p2ρ2 + · · ·+ pnρn) ≥ p1S(ρ1) + p2S(ρ2) + · · ·+ pnS(ρn) . (3:6)

Here, equality only holds when all ρi-s are the same. Therefore, in Eq. (3:5) all UiρasU
†
i must be equal:

UiρasU
†
i = UjρasU

†
j for all i, j-s . (3:7)

4 This entropic argument is already known to be a suitable tool for finding asymptotics of open systems [173].
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Consequently, any quantum state ρas from the set of asymptotic states must evolve unitarily:

R(ρas) = UiρasU
†
i for all i-s . (3:8)

The importance of this observation is unquestionable: Unitary time evolutions are normal, i.e. they can

be diagonalized by unitary operators. We employ this property to determine the asymptotic subspace

of RUO maps. We note that, however, the total RUO map R is usually not normal: [R,R†] 6= 0, thus

cannot be diagonalized by unitaries.

Let us formally diagonalize the asymptotic subspace. The eigenvectors found during the diagonaliza-

tion are operators (X) satisfying

UiXU
†
i = λX for all i-s, with |λ| = 1 . (3:9)

We call such X operators attractors. We note that Eq. (3:9) determines both X and the corresponding

λ eigenvalue of unit magnitude5. As attractors are eigenvectors in the asymptotic subspace, they also

span this space and form an orthonormal basis if they are orthonormalized through the Hilbert-Schmidt

scalar product:

Tr
(
XiX

†
j

)
= δi,j . (3:10)

We call this asymptotic subspace

A = Span ({Xi}) (3:11)

attractor space. We note that there is a trivial attractor which is always available (i.e. satisfies (3:9)),

that is proportional to identity:

Z =
1√

dimI
I , (3:12)

which is due to the construction of RUO maps: RUO maps are unital. However, this observation has an

immediate consequence. All other attractors forming the asymptotic subspace basis Xi are of zero trace

Tr
(
ZX†i

)
=

1√
dimI

Tr
(
X†i

)
= 0 , (3:13)

thus are not necessarily valid density matrices. In other words, the convex space of all possible physical

asymptotic density operators is a smaller subspace in the linear attractor space.

5 All λ eigenvalues in the asymptotic subspace are of unit magnitude, since the asymptotic subspace evolves unitarily (3:8).



36 3.3 Example

Finally, the attractors can be used to give the asymptotic evolution of RUO maps as

ρas(t� 1) =
∑
i,|λ|=1

λtXi · Tr
(
ρ(0)X†i

)
. (3:14)

Note that the last equation is simply a reformulation of the projector expansion. We stress that this

expression holds true only if attractors Xi form an orthonormal basis according to (3:10). Another

interesting property of the last formula is that it is independent of the probabilities pi forming the RUO

map (cf. Eq. (3:3)), as long as 0 < pi < 1 for all i-s. That is, the asymptotics are determined only by

the set of unitaries Ui: The selection of pi-s merely scales and affects the initial dynamics. We would also

like to bring focus on the appearance of the unit magnitude eigenvalues λ in Eq. (3:14): They indicate

that the asymptotic dynamics could possibly contain not just stationary states but also periodic and

quasi-periodic limit cycles.

In summary, the asymptotic dynamics of RUO maps are determined in the following way: First, one

should find the subspace of attractors Xi-s and the corresponding unit magnitude eigenvalues λ using Eq.

(3:9). Next, by using the Hilbert-Schmidt scalar product of Eq. (3:10) one constructs an orthonormal

basis. Lastly, by employing Eq. (3:14) these attractors can be used to determine asymptotic dynamics

of the RUO map with respect to an initial state ρ(0).

3.3. Example

In this section we illustrate RUO maps and the asymptotic method reviewed above through a simplistic

example. Our model consists of a pair of spin-12 particles in magnetic field that are allowed to collide. We

assume that due to a β magnetic field in the z direction a single spin undergoes the following rotation

during a unit of time:

S(β) = exp (−iβσz) =

 exp (−iβ) 0

0 exp (iβ)

 . (3:15)

We assume that the particles are far away from each other (weakly interacting) most of the time, thus

they are not coupled to each other. Consequently, their evolution is independent:

S12 = S(β)⊗ S(β) . (3:16)

Now, let us consider the following collision model. We assume that during a unit time step, there is a

small probability p, that the two particles will collide, in which case they exchange their quantum states
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through a swap operation:

C =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (3:17)

We assume that the particles are far from each other most of the time, thus the probability of collision

is small, and we neglect the probability that multiple collisions can happen during a unit step of time.

Let us build the RUO of the model using the building blocks given above. First, with probability

1− p the particles evolve without any disturbance

U1 = S12 with p1 = 1− p . (3:18)

Next, with probability p the particles collide during a unit step of time. That is described by:

U2 = CS12 with p2 = p . (3:19)

We note that the exact time of the collision during a single time step is not important since the swap

operation commutes with the magnetic precession unitary, i.e.

Sτ12CS
(1−τ)
12 = CS12 . (3:20)

Finally, the RUO R is given by

R (.) = (1− p)S12 (.)S†12 + pCS12 (.)S†12C
† . (3:21)

Now, we find the asymptotic dynamics by finding the attractors X and the corresponding eigenvalues of

unit magnitude using Eq. (3:9).

Since this is a 4 × 4 problem it can be explicitly solved by hand without difficulty. The attractors
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spanning the asymptotic space A has the closed form:

X1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 X2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



X3 = 1√
2


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 X4 = 1√
2


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0





withλ = 1 (3:22)

corresponding to stationary asymptotics;

Y1 = 1√
2


0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 Y2 = 1√
2


0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 0




withλ = exp (−2iβ)

Y ′1 = Y †1

Y ′2 = Y †2

withλ = exp (2iβ) (3:23)

and

Z1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




withλ = exp (−4iβ)

Z ′1 = Z†1

}
withλ = exp (4iβ) (3:24)

which are responsible for limit cycles. From these attractors the asymptotics are readily determined via

Eq. (3:14).

Let us show the asymptotics for a class of initial states. We prepare a separable state where both of

our spins are pointing in the x direction:

ρ0 =
1

2
(I + aσx)⊗ 1

2
(I + bσx) =

1

4


1 b a ab

b 1 ab a

a ab 1 b

ab a b 1

 , (3:25)
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where a, b ∈ [−1..1]. By employing Eq. (3:14) the asymptotic density operator is readily constructed:

ρas(t� 1) =
1

4


1 1

2 (a+ b) e−2iβt 1
2 (a+ b) e−2iβt abe−4iβt

1
2 (a+ b) e2iβt 1 ab 1

2 (a+ b) e−2iβt

1
2 (a+ b) e2iβt ab 1 1

2 (a+ b) e−2iβt

abe4iβt 1
2 (a+ b) e2iβt 1

2 (a+ b) e2iβt 1

 . (3:26)

Note that the magnetic precession can still be observed on the off-diagonal elements of the density

operator despite the decoherence effect of collisions — thus, the asymptotic state of the spins has a limit

cycle, controlled by the external magnetic field.

These small discrete time weakly interacting systems are important models used for studying the

thermalization and other thermodynamical phenomena and quantities in quantum mechanical systems

[174, 175]. The asymptotic method reviewed here is particularly suitable for such studies. We will also

see later in this thesis that this approach is also very fruitful in percolation quantum walks.





Chapter 4

Walks on percolation graphs

4.1. Definition and some properties of percolation graphs

The word percolation usually refers to the movement of fluid through a porous material. A common

way to describe this motion is by a random walk on a graph with randomly broken connections, that

is missing edges or vertices [128, 129]. Such graphs are called percolation graphs. There are two major

approaches to the description of a percolation graph. According to the first approach, all edges have

the identical 1 − p probability to be broken independently from each other, where broken means, that

they are missing (erased) from the graph G(V,E). This model is called bond (edge) percolation since

the imperfectness affects the edges. In the second approach the graph vertices can be missing with the

same 1 − p probability, independently from each other. Naturally, when a vertex of a graph is erased

all connecting edges are also erased . This approach is called site percolation. Both the bond and site

percolation are useful for modeling natural processes, e.g. the filtering of liquids, cracks in wood, and

even the robustness of man-made infrastructure — computer and electrical networks.

One of the most interesting properties of percolation graphs is the phase transition they can exhibit:

Someone can ask the question wether in an infinite graph or lattice an infinite cluster (connected com-

ponent) exists. The probability of the occurrence of such a cluster is either 0 or 1 due to Kolmogorov’s

zero-one law. It is straightforward to see that the existence of the cluster depends on the value of p.

Under a critical pc the probability of an infinite cluster is zero, while above the critical threshold the

probability jumps to one. We illustrate this property on FIG. 4:1. Determining the critical probability is

quite hard mathematically, even for very simple regular lattices — most of the known results up to date

are numerical. To give an example, the bond percolation threshold for a square lattice is exactly 1/2,

however the exact value of the site percolation threshold is yet to be found analytically: its approximate

value is pc ≈ 0.5927 [176, 177].

The mathematical properties of percolation graphs are strongly connected with the behavior of walks

on them. For example the probability of a walker passing through an infinite percolation graph (thus

actually performing percolation) corresponds to the probability of the existence of an infinite cluster.

Moreover, discrete time walkers provide a natural time scale — the duration of a unit step — which

allows one to consider a dynamically changing percolation graph. In this case the probability p describes

the probability that an edge (vertex) is present on the graph during unit time step. Before (or after)

every single step of the walker, one randomly draws a new percolation graph (a new configuration of the
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Figure 4:1. Two bond percolation square lattices. The plot on fhe left shows a lattice where the probability
of each edge being present is identical, independent from each other and its value is p = 0.6. The plot on the
right shows a lattice where this probability is p = 0.3. In square lattices the critical bond percolation threshold
is pc = 0.5, i.e. above this threshold the probability of finding an infinite connected cluster is 1, while below the
threshold, this probability is zero. We illustrate this property by showing that on the plot on the left there is a
path connecting the upper left corner with the lower right corner, whereas on the plot on the right there is no
path between them.

edges). This generalized approach is called dynamical percolation [130].

4.2. Overview of quantum walks on percolation graphs

Classical walks on percolation graphs are suitable for modeling systems where random errors affect

the classical transport. On the other hand, transport can follow the rules of quantum mechanics. In this

case quantum walks on percolation graphs might give a suitable description. Since quantum walks have

an inherently deterministic nature, the effect of the random percolation inevitably disturbs the coherence

of the walker. Moreover, even just to describe quantum walks on percolation graphs is rather non-trivial.

In this section we briefly review the most influential works from the literature of quantum walks on

percolation graphs.

The first work on quantum walks on graphs with percolation is, to our knowledge, by Romanelli et al.

[131]. The authors investigated the one-dimensional discrete time Hadamard quantum walk (see Section

1.1.1) on the line under the decoherence effect of dynamical percolation — which they call broken links.

Their model has a single parameter corresponding to errors of the graph: p, which is the probability that

a link between any two adjacent sites is missing during a unit time step. In this model the time evolution
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is kept unitary:

U(t) = U
(t)
K U

(t−1)
K · · ·U (1)

K , (4:1)

with

UK = SK · (IP ⊗ C) (4:2)

where SK is the step operator on the percolation line, i.e. it realizes a step for a concrete configuration

K ⊆ E of the edges. An important question is to define SK unitarily. The authors have given

SK =
∑

(x,x+1)∈K

|x+ 1, R〉〈x,R|+
∑

(x,x−1)∈K

|x− 1, L〉〈x, L|+

∑
(x,x+1)6∈K

|x, L〉〈x,R|+
∑

(x,x−1) 6∈K

|x,R〉〈x, L| . (4:3)

that is, the walker facing a broken edge (i.e. not in K) has its internal coin state reflected without

changing position. Although between steps the configuration of the underlying graph might change,

statistical averaging is not defined in the model, thus, the effect of broken links is considered as a

unitary noise. The question the authors have addressed was how the dynamically changing graph affects

the variance (spreading) of the quantum walk. They found numerically that a transition between the

two-peaked quantum (ballistically spreading) and classical (diffusively spreading) Gaussian distributions

happens after a critical number of steps, which can be expressed as

tc =
1

p
√

2
. (4:4)

A simple argument behind this result can be given as follows: At the beginning, the wave-function

is confined to a small region. Consequently, it is not disturbed by the dynamical percolation of the

graph, thus, the walk can spread ballistically. At time t, the walk covers t/
√

2 sites, and about pt/
√

2

links are broken in that area. As the proportion of broken links grows to the order of 1, the disturbance

becomes relevant, and the quantum walk will lose its quadratic speedup, reverting to the classical diffusive

spreading. This behavior is illustrated in FIG. 4:2. The diffusion coefficient is estimated to be D '

0.4 (1−p)
p by linear regression. The authors also determined a critical value for p which is approximately

0.44, when the diffusion coefficient is 1/2, which corresponds to that of the classical unbiased random

walk.

The two-dimensional extension of the above dynamical percolation model was first considered by

Oliveira et al. [132]. The two-dimensional Hadamard, Grover and Fourier walks (cf. Section 1.1.2) were
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Figure 4:2. Dynamical percolation as unitary noise in a one-dimensional quantum walk. The position distribution
Pn of a quantum walk on the percolation line is shown, for p = 0.01 (which is the probability that a given edge
is missing) at two different time instances. For small number of steps, the walk is only slightly affected by the
decoherence effect of the percolation, albeit the spreading is still ballistic at t = 50, as seen in the upper plot. After
the critical number of steps [see Eq.(4:4)], the decoherence becomes significant and the walker spreads diffusively,
exhibiting a Gaussian distribution as illustrated in the lower plot which corresponds to t = 1000. The distributions
corresponding to the undisturbed (unitary) case of p = 0 are shown in the background. This figure is taken from
[131].

studied in terms of the diffusion coefficient. The authors showed that if the percolation probabilities can

be tuned independently on the diagonal line, the walker can become confined to that one-dimensional

region. This confinement can lead to increased coherence (and thus, ballistic spreading). Hence, at the

extreme cases of low p� 1 and high p ≈ 1 the system behaves as a ballistically spreading coherent wave,

whereas in the regime in-between the decoherence is significant and the walk is diffusive.

Abal et al. [133] investigated the one-dimensional infinite line with broken links using a single-

parameter coin class

UC =

 cos θ sin θ

sin θ − cos θ

 (4:5)

They have introduced a translation-invariant type of the dynamical percolation: With probability p2 the

walker stays, with probability (1 − p)p the walker is not displaced to the left (or to the right). Finally,

with probability (1 − p)2, the walker is free to move (performs an undisturbed step). The translational

invariance allowed the authors to use Fourier transformation to analyze the system. The dependence of
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the diffusion coefficient on the parameter of the coin was determined numerically.

In the work of Leung et al., [134] the one-dimensional lattice with dynamically broken links is invest-

igated using the statistical mixture of the unitary trajectories.

ρ(t) =
∑
K∈E

pKU
t
Kρ(0)

(
U †K

)t
(4:6)

Their results about the one-dimensional system agree with the results of Romanelli et al reviewed above.

Furthermore, they claimed that the transition from ballistic to diffusive motion happens slowly in certain

cases, thus the quantum speedup could still be exploited for small number of steps. For larger systems

they found that the spreading is diffusive. However, the pre-factor of the spreading of the quantum walk

can be still higher than its classical counterpart, i.e. its motion is diffusive but faster. The authors also

studied the effect of random phases on spreading. In the same work the Grover walk on a two-dimensional

Cartesian lattice (cf. Section 1.1.2) with static bond and the site percolation was analyzed using the

same statistical mixing as in (4:6). The authors numerically determined the spreading (variance) of the

system. Their results show that below the critical bond (site) percolation threshold p ≈ 0.5 (p ≈ 0.6) the

quantum walk — like a classical walk — can not spread. However, above the threshold the spreading of

the system shows a fractional scaling, i.e. sub-diffusive motion. This is illustrated on Fig. 4:3. In the

limit when small number of links are broken the quantum walk surpasses the classical diffusive spreading

and exhibits sub-ballistic fractional spreading. The authors employed mostly numerical simulations to

obtain their results. We note that since the number of configurations grows exponentially in Eq. (4:6)

these simulations become exponentially hard to compute.

In a related article Lovett et al. [135] numerically investigated percolation graphs as a factor affecting

the efficiency of a quantum walk based search (cf. Section 1.1.3 ) on two- and three-dimensional lattices.

They found that below the percolation threshold the search fails naturally, since with high probability

the graph is not connected. Consequently, the probability amplitude cannot be concentrated (interfere

constructively) on the marked vertices. However, the authors found that just above the critical percolation

threshold the walk exhibits the speed, O(N), of a classical search. The reason behind this effect is that in

the percolation graph with parameter around the percolation threshold the remaining connected structure

resembles a one-dimensional graph. Furthermore, above this regime the speed of search rapidly converges

to the quantum value6. Surprisingly, the quantum scaling is reached around p = 0.7 — where p is the

probability of an edge being in the graph.

Marquezino et al. [136] investigated discrete time quantum walk on an n-dimensional hypercube. The

6 The quantum walk based search needs O(
√
N logN) oracle queries in two-dimensions, and O(

√
N) queries in three or

more dimensions [47–50].
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Figure 4:3. Fractional scaling exponent α for two-dimensional percolation lattices derived from numerical data
for t = 100 to 140 steps. The inset shows more detail for 0.8 < p < 1.0 in case of random phases, and using
different lower cut-off-s. This figure is taken from [134].

average limiting distribution

π(x) = lim
T→∞

1

T

T−1∑
t=0

P (x, t) ,

was considered in their work, where P (x, t) is the position distribution of the walk at time t. The authors

employed the dynamical percolation (broken links) as a type of unitary noise — i.e. no averaging over

different percolation lattices was performed (cf. Eq. (4:1)). In the unperturbed (p = 0, no broken links)

Grover operator driven case the average limiting distribution is not necessarily uniform. It depends on

the initial state. However, in the percolation case even a small noise will cause the system to reach

the uniform limiting position distribution. The authors used mixing time to characterize the speed of

convergence. They found that it depends on the probability p, and the numerical results imply that the

fastest mixing happens around pc ≈ 0.1. Consequently, even a small decoherence can aid the mixing

procedure.

In continuous time quantum walks (CTQWs), the static percolation (where the disorder does not

change through the evolution) was considered in the works of Mülken et al. [40, 41] and Anishchenko et

al. [44]. Also, the case of dynamical percolation with CTQWs has been studied by Darázs et al. [137].

The authors showed that the dynamical percolation acts as a rescaling of time evolution when the changes

occur with a high enough frequency. The return probability was also investigated in detail. It is shown
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that although the system suffers a strong decoherence due to the rapid changes of the underlying lattice,

the return probability still shows an oscillatory behavior in time, which is a characteristic property of

the undisturbed quantum evolution.





Part II





Chapter 5

Asymptotics of quantum walks on percolation graphs

Discrete time quantum walks (cf. Section 1.1) obey unitary dynamics by design. Thus, they are

closed quantum systems. Percolation (See Chapter 4), that is the removal of edges from the underlying

graph controlled by some classically random process, naturally makes this time evolution open. Recently,

these kind of systems gained some interest (See Sec. 4.2), but most actual results are either numerical or

phenomenological, mostly due to the “size" of the problem: A quantum walk spread on a bigger graph

means a bigger territory for percolation, and the number of actual percolation graphs (configurations)

grows exponentially with the size of the graph. Thus, even purely numerical results are hard to obtain

due to the required computational power.

This section is devoted to study general discrete quantum walks on finite graphs (lattices) under

the decoherence effects of dynamical percolation. Employing the asymptotic theory of RUO maps (cf.

Chapter 3) we present a method for finding the asymptotics of such open walks, which is based on

separation of time evolution. We also show that on regular graphs the superoperator corresponding to

the open system evolution can be constructed using polynomial resources.

This chapter is organized as follows: First, in section 5.1 we define the model of discrete time quantum

walks on percolation graphs. Next, we formally solve the asymptotics of this model and also reveal a

polynomial construction that aids the numerical studies. In section 5.3 we present a general analytical

method for obtaining the asymptotics. Following that, we show that on regular lattices the presented

method becomes considerably simpler. Finally, we draw some conclusions.

5.1. Definitions

We repeat (see section 1.1) that discrete time (coined) quantum walks are described on a composite

Hilbert space

H = HP ⊗HC , (5:1)

where HP is the position space corresponding to the vertices of some underlying graph or lattice G(V,E),

whereas HC is the coin space corresponding to the directions of nearest neighbor hops. The single step

of the closed time evolution is given by a unitary operation (See Eq. (1:7)) which corresponds to two

essential phases. First, the internal coin degree of freedom of the particle is rotated unitarily — this

corresponds to the coin toss. Second, according to this coin state, the particle is coherently shifted to its
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new position.

Suppose that due to some errors in the hopping mechanism the particle cannot pass through an edge

during a unit time interval (discrete step). We consider such an edge broken during that unit time step.

Naturally, otherwise the particle is free to pass through the same edge. We call such an edge perfect. We

assign a probability p` to each edge ` ∈ E of the graph representing the probability of the edge being

perfect during a unit time step. In this way 1 − p` is the probability of the edge being broken during

the same unit time step. We assume that all these events are independent. A natural way to describe a

system with such imperfections is to introduce dynamical percolation into the underlying graph: Before

every discrete time step we choose an edge configuration K ⊆ E randomly (according to the probabilities

p`), which describes the failures in the hopping mechanism. Broken edges are simply missing from the

percolation graph, i.e. they are not in configuration K.

We now give the time evolution of such systems. Through the dynamical percolation (randomly

changing edge configuration) classical randomness enters the model. Thus, we describe the state of the

system using density operator formalism. A unit step of the stochastic time evolution reflects our lack of

knowledge about the actual (random) edge configuration K , that is a unit step is an incoherent mixture

of different coherent time evolutions:

ρ(n+ 1) =
∑
K
πKUKρ(n)U †K ≡ Φ(ρ(n)) , (5:2)

where Φ is a linear superoperator. πK represents the probability that a given edge configuration K occurs:

πK =

{∏
`∈K

p`

}∏
` 6∈K

(1− p`)

 . (5:3)

By UK we denote the unitary time evolution operator of the QW on the percolation graph with config-

uration K. The superoperator Φ by construction belongs to the class of random unitary operations —

RUO maps (See Chapter 3).

We define the unitary UK, that depends on the configuration K ⊆ E, in the following. Whenever the

particle faces a broken (missing) edge, which it cannot pass, it stays at its current place, but suffers a

reflection in its internal coin degree of freedom. We describe this reflection by an off-diagonal unitary

matrix R. Naturally, the walker can pass through a perfect edge like in the case of the time evolution of

a closed system. The formal mathematical definition is given as:

UK = SK(IP ⊗ C) , (5:4)
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Figure 5:1. Illustration of a discrete time quantum walk on a one-dimensional graph with dynamical percolation.
In the figure we show a single possible unitary trajectory of the system — time is labeled by n. The quantum
state of the walk is pure in every step. We stress that the lack of knowledge about the actual edge configuration
(percolation graph) makes the system open, so the time evolution is not unitary. The arrows show the directions
where the wave packet can spread (hop) in the next step, while the loops correspond to the case when the wave
packet cannot pass through a missing (broken) edge — as a consequence its internal coin degree of freedom will
suffer a reflection.

where

SK =
∑

(x,x⊕c)∈K

|x⊕ c〉P 〈x|P ⊗ |c〉C〈c|C +
∑

(x,x⊕c)6∈K

|x〉P 〈x|P ⊗ |c〉C〈c|CR , (5:5)

is the step operator on configuration K ⊆ E. The first term describes the coin dependent shift (hopping)

when the edge is perfect ( cf. Eq. (1:6) ): with x⊕ c we denote the nearest neighbor of x in the direction

c. The second term corresponds to the case when the actual edge is broken: the internal coin degree

of freedom suffers a reflection by operator R but the particle stays at its current place. C denotes the

unitary coin operator. We note that in equation (5:4) operator IP ⊗C is spatially homogeneous, but SK

breaks any translational invariance. We illustrate a single unitary trajectory of this system in FIG. 5:1.

To summarize, the discrete evolution of the quantum walker on a dynamical percolation graph is

described by repeated application of the single step Φ of Eq. (5:2). After the n-th step the walker, that

was initially at the state ρ0, will be found in

ρ(n) = Φn(ρ0). (5:6)

In the following we give the formal solution for the asymptotics.

5.2. Formal solution and a polynomial construction

Both the unitary and the percolative coined quantum walks can be viewed as repeated iterations

of one single step. In the case of the percolative quantum walk, there is a random choice of broken
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edges in each step. For such an open system, each step can be different in a certain realization of the

process, nevertheless statistically speaking one can view the process as an iteration of the same step on the

density operator of the system. This fact is expressed by the repeated application of the time-independent

superoperator introduced in the previous section. The analysis of the dynamics for a percolative quantum

walk is in general more involving than the analysis of the corresponding unperturbed unitary walk. In the

latter case, the discrete evolution can be described by the iteration of a single unitary operator. There are

two advantages of having a unitary generator at hand. First, it can be diagonalized and, second, we can

always choose an orthonormal basis formed by its eigenvectors. In contrast, for the open system we have

a generator Φ like Equation (5:2), a superoperator acting on density operators. Such a superoperator

is not necessarily normal, i.e. it does not commute with its adjoint operator, therefore one may not be

able to simply diagonalize it in some orthonormal basis. However, one can still find the solution for the

asymptotic behaviour of an iterated random unitary dynamics. The theoretical background is reviewed

in Chapter 3.

The key aspect is to find the attractor space A ( See Eq. (3:11) ) which is spanned by attractors Xλ,i

( cf. Eq. (3:9) ) satisfying

UKXλ,i = λXλ,iUK ∀K ⊆ E , |λ| = 1 . (5:7)

Then, the asymptotic dynamics can be readily determined with the help of the following formula ( cf.

Eq.(3:14) )

ρas(n) = Φn(ρ0) =
∑
|λ|=1,i

λnXλ,i · Tr
(
ρ0X

†
λ,i

)
for n� 1 . (5:8)

Here the phases of the λ eigenvalues of unit magnitude are responsible for the appearance of asymptotic

dynamics which can be stationary asymptotics, periodic or quasi-periodic limit cycles. We note that in

order for the latter formula to hold true, the orthonormality of attractors ( cf. Eq.(3:10) ) is needed:

Tr
(
Xλ,iX

†
λ′,j

)
= δλ,λ′δi,j . (5:9)

It is important to stress that the attractors given in Eq. (5:7) do not depend on the probability distribution

{πK}, thus, the asymptotic behavior of dynamics of Eq. (5:8) generated by RUO maps is insensitive to

the actual p` probabilities of errors, except in the extremal cases when some p` = 1 or 0. As we

discussed in Chapter 4 in percolative systems sometimes there exists a critical value for the probability,

at which a phase transition occurs in the system. Here, a direct consequence of the insensitivity of the

asymptotic dynamics to the particular value of the parameter is that the asymptotic dynamics cannot
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reflect signatures of such a phase transitions.

Although the solution is formally given, determining the attractor space matrices through Eq. (5:7) is

a hard task. In fact, the number of configurations K depends exponentially on the number of edges |E|,

which is on regular lattices, proportional to the number of vertices N ≡ |V |. This last number is usually

called the size of the system. This exponential dependence makes brute force numerical studies inefficient

for larger systems. Moreover, the construction of Φ superoperator that we need to study the exact short

time dynamics also requires resources that scale exponentially with the size of the system. However,

we show that for regular graphs the problem of finding a numerical solution can be handled using only

polynomial many resources. We rewrite Eq. (5:8) in terms of matrix elements Xs,c
t,d = 〈s, c|X|t, d〉. Thus,

ρ̂s,ct,d(t+ 1) =
∑
a,b,q,r

ρ̂a,bq,r(t)

∑
K⊆E

πK(p)UK
s,c
a,b U

∗
K
t,d
q,r

 . (5:10)

The second sum is taken over all possible configurations K ⊆ E. This latter summation is the one

with exponential dependence on the size of the system (for regular lattices). However, by studying the

elements of SK one can see that only elements connecting neighboring vertices (a vertex is considered to

be its own neighbor) can be nonzero. Thus, SK is a sparse matrix. Consequently, the expensive second

sum can be taken only over edges between neighboring sets of vertices ξ, thus ⊆ ξK ⊆ E. On a d-regular

graph every vertex has d neighbors, thus a single run of the second sum, restricted to the set ξ, contains

only 22d = 4d additions in the worst case. As the first summation is O(N2) (polynomial) with respect to

the number of vertices, the total computation cost is reduced to the polynomial regime with respect to

N . One can repeat the same line of thoughts to see that the superoperator Φ is also a sparse operator,

and the cost of its construction by can be reduced to the polynomial regime as well. During our studies

we performed numerical tests to confirm our analytical results and to generate figures, and we found a

great use of this result.

In the following we move on to give a general analytic method for determining the asymptotics of a

quantum walk on dynamical percolation lattices.

5.3. General method

In general, determining the attractor space is a demanding task. However, it can be simplified consid-

erably with the use of symmetries (e.g. translation invariance) of the walk. We will use the translation

invariance of the coin operator to separate the definition of the attractor space matrices of Eq. (5:7) into

a coin and a graph dependent part. By using the time evolution definition of Eq. (5:4), Eq. (5:7) takes
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the form

SK (IP ⊗ C)X
(
IP ⊗ C†

)
S†K = λX , (5:11)

which we immediately rewrite into

λS†KXSK = (IP ⊗ C)X
(
IP ⊗ C†

)
, (5:12)

where |λ| = 1. This equation must be satisfied for all K ⊆ E. A closer look at the latter formula reveals

that the right hand side does not depend on edge configurations and the left hand side does not depend

on the coin operator. Consequently, we can separate the equations collected in Eq. (5:12) into two sets of

equations. The solution for the original problem should satisfy all the equations in these new collections,

simultaneously. First, if we apply SK′ from the left and its adjoint from the right to Eq. (5:12) we get

SKS
†
K′XSK′S

†
K = X ∀K′,K ⊆ E (5:13)

which we call the shift conditions. The second set consists of only equation

λS†K′XSK′ = (IP ⊗ C)X
(
IP ⊗ C†

)
, (5:14)

which must hold for a single given K′ ⊆ E. We note that in case of discrete time quantum walks the

coin operation is local ( cf. Eq. (5:4) ). Also, the step operator Eq. (5:5) on percolation lattices is local

on an isolated vertex. Consequently, the most straightforward configuration for Eq. (5:14) is the empty

configuration K′ = {}, i.e. when all edges are broken. In this case Eq. (5:14) have the simple local form

of

(IP ⊗RC)X(IP ⊗ C†R†) = λX , (5:15)

which we call the coin condition. Using the coin block form of the operator X =
∑

s,t |s〉〈t| ⊗X(s,t) one

can realize that equation (5:15) is equivalent to the set of identical (local) coin block conditions

(RC)X(s,t)(RC)† = λX(s,t) (5:16)

for each coin block X(s,t). (We intentionally use the notion “coin block" because each matrix X(s,t) is

defined on the coin Hilbert space HC .) Employing the isomorphism 〈x(s,t)|c, d〉 ≡ 〈c|X(s,t)|d〉 we can
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turn Eq. (5:16) into an eigenvalue problem for the operator RC

(RC)⊗ (RC)∗x(s,t) = λx(s,t). (5:17)

Let us give some physical meaning for the equations (5:13) and (5:16). The shift conditions Eq. (5:13)

represent the underlying graph with the boundary conditions. Also, all attractors are contained in the

space that satisfies the shift condition. On the other hand the coin block conditions Eq. (5:16) determine

the possible members of the attractor spectrum, which are the eigenvalues of the superoperator Φ that

have a unit magnitude ( |λ| = 1 ). Also, through the coin block conditions the internal coin structure of

attractors are given, and the actual attractors can be found in the space given by the shift conditions.

To summarize, we provided the following method. First, one should find a solution space spanned by

the shift conditions of Eq. (5:13). This solution space is naturally determined by the underlying graph

of the walk. Second, by employing the coin conditions (5:16) one can determine the unit magnitude

eigenvalues λ and also restrict the space that satisfies the shift conditions to the actual attractors. Lastly,

through Eq. (5:9) the attractors can be orthonormalized to form an orthonormal basis, and by using Eq.

(5:8), the asymptotics are given readily. The presented method which is based on separation is generally

applicable to general percolative quantum walks, with the only restriction that the coin operator has to

be translation-invariant and local. This method is one of our main results. In the following we further

simplify our method and illustrate it on a family of one-dimensional graphs.

5.4. Shift conditions on regular lattices

In the previous section we gave a general method for finding the asymptotics for percolative discrete

time quantum walks. The given process can be simplified even further by studying regular, translation-

invariant graphs (lattices). The translational invariance allows us to study whole graph families, where

the number of lattice sites is not fixed, rather it is a parameter of the problem. In this section we

consider simple translation-invariant one-dimensional lattices, which are the linear graph (line) and the

circle graph (N-cycle), both consisting of N = |V | vertices. These graphs represent two physically relevant

situations: reflecting and periodic boundary conditions. We set the reflection operator R = σx. However,

we note that the simplifications presented here are valid for higher dimensional and more general lattices

too, since the only property we use is the translational invariance of the graph. We have chosen the

one-dimensional graphs for the purpose of giving a straightforward example.

In this section we will use the one-dimensional notation of Section 1.1.1, i.e. the positions on the

one-dimensional lattice are given by integers. In our case we consider non-negative integers to represent

the vertices of the graph. Coin states |L〉 and |R〉 are corresponding to steps to the left and to the right,
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respectively.

To begin with, we repeat the shift conditions of Eq. (5:13) here:

SKS
†
K′Xλ,iSK′S

†
K = Xλ,i ∀K′,K ⊆ E . (5:18)

It is easy to see that K = K′ is a tautology, thus actual conditions (restrictions on the elements of Xλ,i)

are given only when the configurations are different. For the system under consideration SK matrices

are always permutation matrices, thus for given configurations they define a one-to-one correspondence

between matrix elements. Moreover, we deal with walks that make only nearest neighbor steps. These

properties imply that a single matrix element determines three other matrix elements at most. We will

denote a matrix element of a matrix from the attractor space with

〈s1, c1|Xλ,i|s2, c2〉 = W s1,c1
s2,c2 . (5:19)

Naturally, we start with a matrix where all matrix elements are free parameters to chose. We now fix

a matrix element W p,L
q,L for further investigation. When p 6= q, the edges (p, p ⊕ 1) and (q, q ⊕ 1) are

different. Thus, application of Eq. (5:18) results in:

W p,L
q,L = W p⊕1,R

q⊕1,R = W p,L
q⊕1,R = W p⊕1,R

q,L . (5:20)

On the other hand, when p = q, the edges (p, p⊕ 1) and (q, q ⊕ 1) are the same and hence both indices

of the matrix element “feel" the same configuration (shifts). In this case:

W p,L
p,L = W p⊕1,R

p⊕1,R . (5:21)

One can repeat the proccess shown above to determine all the shift conditions for the elements of

an attractor space matrix. Due to translation invariance of the underlying graph the conditions can be

summarized in a concise way:

W s1	1,L
s2	1,L = W s1,R

s2,R
= W s1,R

s2	1,L = W s1	1,L
s2,R

, (5:22)

when s1 6= s2 is satisfied. If s1 = s2 ≡ s, the following conditions must hold:

W s	1,L
s	1,L = W s,R

s,R (5:23)

W s,R
s	1,L = W s	1,L

s,R . (5:24)

Furthermore, if s1(2)	(⊕)1 belongs to a reflecting boundary (in case of the linear graph), the correspond-
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ing equations must be omitted from the set of equations defined above. This omission gives the difference

between the reflecting and periodic boundary conditions. Note that position indices run through their

corresponding abstract spaces, i. e. s, s1, s2 runs through the site labels of the underlying one-dimensional

graph. Again, note that shift conditions do not connect elements that have different coin labels at the

same position, i. e. shift conditions do not restrict the form of coin blocks available at a given position

— this is a common property for all shift conditions.

In summary, the abstract shift condition subspace determined by Eq. (5:13) can be given by using

the equations (5:22), (5:23), and (5:24). The translational invariance of the operations allow for such

compression of solutions. The method can be applied to graphs with arbitrary number of verticesN = |V |.

This allows for studying solutions which are out of the reach for the current numerical or experimental

techniques.

5.5. Conclusions

Discrete time quantum walks on dynamical percolation graphs are special cases of open systems.

Due to the exponential amount of computational resources needed to study such systems, finding proper

analytical tools is essential. In this chapter we presented a general analytical tool for giving the asymptotic

dynamics of quantum walks on finite graphs dynamically percolated graphs.

We first defined the random unitary operation (RUO) that gives the time evolution. This time

evolution can also be viewed as a superoperator which is linear with respect to the density operator.

For such superoperators the asymptotics can be determined through the construction of the so-called

attractor space. We have given a general method based on the separation of the equation for the time

evolution which formally gives the attractor space. This was done through two sets of equations called

the shift conditions and coin condition. The shift conditions correspond to the graph structure, while

the coin condition gives the coin structure of the attractors, and also determines the actual asymptotic

dynamics through the phases of eigenvalues. Thus, the asymptotic dynamics is determined by the coin

operator. This separation allows for studying whole classes of coins on the same graph in a straightforward

way, since only the coin conditions corresponding to different coins must be applied to the same space

determined by the shift conditions.

We also showed that on regular translational invariant graphs (lattices) the shift conditions can be

simplified considerably, giving a concise form to the conditions. This allows for studying whole families

of lattices where the number of vertices (the size of the system) is a free parameter, too. Through this,

even numerically unreachable graphs can be studied.

Although the computational power required for the brute force construction of the asymptotics or
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the superoperator for regular graphs is exponential in terms of the graph size, we showed that the

computational need can be reduced to the polynomial regime for regular graphs. The corresponding

polynomial construction is based on the observation that the time evolution operator of discrete time

quantum walks is a sparse matrix.



Chapter 6

Determining asymptotics through pure states

The asymptotics of time evolutions given by RUO maps are given through the search of the attractor

space (See Chapter 4). However, attractors are not restricted to proper density matrices. In fact, they

just span a linear attractor space in which the convex space of the actual asymptotically available density

operators reside. Consequently, attractors usually do not have an inmediate physical meaning, thus it

is hard to draw any physical properties of a system just given its attractor space. Naturally, one can

address this problem: Is it possible to construct attractors in a way that they have a direct physical

meaning? Is it possible to find some physically relevant part of the attractor space?

In this chapter we pursue the problem of giving an inmediate physical meaning to attractors. We

present a new, simpler method to give the asymptotics of RUO maps. This method is based on the

search of pure common eigenstates, which are the fixed points of dynamics with actual physical meaning.

Moreover, they can be found more easily in comparison with general attractors. The connection between

the general attractor space approach and the pure state ansatz is discussed. We also apply this method

on quantum walks with dynamical percolation.

This chapter is organized as follows. First, we present our ansatz based on finding pure fixed points of

the dynamics. Next, we employ the ansatz on the model of quantum walks with dynamical percolation

(which we described in the Chapter 5 ) to determine the asymptotics of the model. Finally, we draw

conclusions.

6.1. Pure state ansatz

The asymptotics of RUO maps (See Chapter. 3) are given through finding the attractor space A ( See

Eq. (3:11) ) which are spanned by attractors defined by Eq. (3:9). By construction these matrices are not

guaranteed to be proper density matrices. Consequently, the attractor space is an abstract linear space

containing the subspace of actual asymptotic density matrices. In this sense attractors do not necessarily

carry a direct physical meaning.

We would like to use the fact that attractor matrices X evolve unitarily in the asymptotic regime as

it is established by Eq. (3:9). Let us consider pure states |ψ〉 which are eigenstates of all the possible

unitaries Ui used in the construction of the superoperator (cf. (3:3)):

Ui|ψ〉 = α|ψ〉 for all i-s . (6:1)
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We refer to these states simply as common eigenstates. We stress that a common eigenstate |ψ〉 takes

the same α eigenvalue for all Ui unitaries. Surprisingly, as we will show below, the procedure based on

finding these states can be very fruitful to construct a substantial part of the attractor space.

Such common eigenstates have an interesting property, namely they automatically form attractors as

Ui|ψ〉〈ψ|U †i = αα∗|ψ〉〈ψ| = |ψ〉〈ψ| = Ui′ |ψ〉〈ψ|U †i′ (6:2)

for all i, i′-s. Let us choose an orthonormal basis of all common eigenstates {|φα,i〉}, where index i refers

to possible degeneracies and α is the eigenvalue corresponding to |φα,i〉. It is apparent that any linear

combination

Y =
∑

αβ∗=λ,i,j

Aα,iβ,j |φα,i〉〈φβ,j | , (6:3)

with a fixed eigenvalue product αβ∗ = λ constitutes an attractor corresponding to eigenvalue λ. Indeed,

such attractors by their construction satisfy defining equation (3:9), which we repeat here for a moment:

UiXU
†
i = λX for all i-s, with |λ| = 1 . (6:4)

Interestingly, all these attractors satisfy even the stricter conditions (as it follows directly from the

construction)

UiXU
†
i′ = λX for all i, i′-s, with |λ| = 1 . (6:5)

We call these attractors p-attractors. In contrast with the condition on general attractors (6:4) the latter

condition on p-attractors (5:7) is more restrictive, because in this case X must be invariant under the

effect of any different pair of unitaries Ui and Ui′ . Therefore, not all attractors can be constructed from

pure common eigenstates in general. For example the trivial attractor proportional to identity is not

a p-attractor, as it breaks the condition (6:5) (apart from the case of a purely unitary time evolution).

Consequently, the attractor space must always contain the span of all p-attractors and identity, as a

minimal subspace. In fact, for certain RUO based evolutions this minimal subspace case is actually the

whole attractor space. In such case, the asymptotic time evolution simplifies considerably:

ρ(n) = Uni Pρ0P
(
U †i

)n
+ P̃

Tr
{
ρ0P̃

}
TrP̃

where n� 1 . (6:6)

Here, P is a projection into the subspace of common eigenstates, and P̃ is its orthogonal complement

satisfying P+P̃ = I. Let us discuss the meaning of (6:6) for a moment. In the minimal subspace case the
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asymptotic state is an incoherent mixture of the common eigenstate subspace — evolving unitarily – and

the completely mixed state projected on the orthogonal complement of the common eigenstate subspace.

This formula also shows that the space spanned by common eigenstates is a decoherence free subspace.

Thus, we have given a way to find decoherence free subspaces in RUO time evolutions. Such protected

subspaces are always handy in quantum information, e.g. they can be employed for computation or

information storage purposes.

Even when the attractor space is not the span of the trivial attractor and p-attracors, the pure state

ansatz can aid the construction of the full attractor space. Practically speaking, even if there are some

nontrivial non-p-attractors, it is convenient to first construct all p-attractors using the pure common

eigenstates, which are naturally easy to calculate. Then, using the general method one can construct

and add the non-p-attractors to complete the whole attractor space — the key idea is to elaborate

the differences between (6:4) and (6:5). Another aspect of the pure state ansatz is that pure common

eigenstates are much easier to calculate then regular attractor space matrices. In the following, we show

a case study by employing the pure state ansatz for the case of the one-dimensional percolation quantum

walks we studied in Chapter 5.

6.2. Percolation quantum walks

First, we start the analysis with searching for common eigenstates. According to Equations (5:4) and

(6:1) they are defined by equations

SK (IP ⊗ C) |ψ〉 = α|ψ〉 for allK ⊆ E . (6:7)

This formula can be separated into a coin condition with one chosen edge configuration

SK(IP ⊗ C)|ψ〉 = α|ψ〉 (6:8)

and the set of shift conditions

SK′S
†
K|ψ〉 = |ψ〉 for allK,K′ ⊆ E . (6:9)

The most straightforward configuration for Eq. (6:8) is the one with all edges broken K = {}, which

makes the coin condition local

(IP ⊗RC)|ψ〉 = α|ψ〉 . (6:10)
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Expanding an arbitrary pure quantum state as |ψ〉 =
∑

s |s〉 ⊗ |ψ(s)〉C we can rewrite Eq. (6:10) into the

set of local and equivalent eigenvalue equations

RC|ψ(s)〉C = α|ψ(s)〉C . (6:11)

Equations (6:11) determine the possible candidates for eigenvalues α associated with common eigenstates

(6:1) and also the general structure of internal coin states |ψ(s)〉. These internal coin states are then

bound to each other via shift conditions (6:9). This procedure provides us the whole subspace of common

eigenstates (6:1) and via (6:3) we can easily construct all p-attractors.

Let us show here the difference between the parts of the attractor space formed by the p-attractors and

the non-p-attractors. All p-attractors are determined by equations (6:5). Following the same separation

steps as we performed earlier, equations (6:5) can be rewritten into the local condition for coin blocks

and the set of shift conditions for p-attractors. The coin condition turns out to be the same as for general

attractors ( cf. Eq. (5:16) ). However, the shift conditions ( cf. Eq. (5:13) ) differ:

SLS
†
KY SK′S

†
L′ = Y ∀K,K′,L,L′ ⊆ E . (6:12)

In fact, this is the only difference between general and p-attractors for percolation quantum walks. One

can employ this knowledge to construct the whole attractor space. First, through the common eigenstates

one can construct all p-attractors. Next, by allowing the less restrictive conditions on general attractors

one can find the missing non-p attractors.

6.3. Conclusions

The general method developed for solving asymptotics of RUO maps (See Chapter 3 ) incorporates

a key part, which is the construction of the so-called attractor space through finding attractors. These

attractors are invariant fixed points of the open time evolution, albeit they are not restricted to valid

density matrices. Consequently, attractors do not carry an inmediate physical meaning. More import-

antly, if one cannot find all attractors, then there is only a very limited knowledge which can be obtained

about the asymptotics of the system.

In this chapter we have given an ansatz which is based on the construction of attractors by using

the pure fixed points of dynamics: common eigenstates. Naturally, these common eigenstates are much

more easy to find, and all of them carry a direct physical meaning. The subspace formed by these

eigenstates are decoherence free, thus are protected from the effects of the open system dynamics. Even

without knowing the full attractor space this knowledge can be employed. We have also shown that the
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attractors built from these eigenstates — which we call p-attractors — obey a stricter set of conditions

in comparison with the general attractors. Thus, not all attractors can be constructed as p-attractors.

A straightforward example for such non-p-attractor is the trivial attractor: the completely mixed state.

However, in some cases the full attractor space is provided by the span of the trivial attractor and the

p-attractors. We showed that in this case the asymptotic time evolution can be given in a nice concise

form. We note here that this minimal subspace case will surface again later for some percolation quantum

walks.

We have applied the proposed ansatz on discrete time percolation quantum walks. We saw that

the separation of time evolution allows for finding common eigenstates easily. We also illustrated the

difference between p- and non-p-attractors. The deeper understanding of this difference allows for finding

asymptotics in a very economical way: First, one should construct all p-attractors through the easy to

calculate common eigenstates. Second, by allowing the conditions of general attractors one can construct

the missing p-attractors.





Chapter 7

One-dimensional quantum walks on percolation graphs —

complete analysis

The problem of the discrete time quantum walks on one-dimensional percolation graphs represent

the most simple scenario when one wishes to join these two areas of physics (See Chapter 4 for details).

However, the problem was only partially addressed so far in the literature, and most studies were only

numerical due to the complexity of the problem. Here our goal is to give a complete, closed form solution

to the one-dimensional problem while leaving it as general as possible.

We employ our methods given in the previous chapters to solve the time evolution of the one-

dimensional quantum walk on percolation graphs using general SU(2) coins. We study two basic graph

families: the circle and the linear graphs, corresponding to the periodic and reflective boundary condi-

tions respectively. We derive the explicit closed form of the asymptotic states and find a rich variety of

asymptotic solutions. We also discover the presence of the so-called edge states which are asymptotic

states exponentially localized at the boundaries of the system.

This chapter is organized as follows. In the first section we explicitly derive the asymptotics of

percolation walks on circles and lines. In section 7.2 we focus on the edge states. Finally, we draw

conclusions.

7.1. Explicit solutions

In this section we explicitly solve the asymptotic time evolution of cycle and line graphs, both con-

sisting of N vertices. We will rely on the notation used for one-dimensional walks of Sec. 1.1.1. Let us

give the form of the time evolution operator of the one-dimensional percolation walk ( cf. Eqs. (4:3),

(5:4) and (5:5) ) here:

UK = SK(IP ⊗ C) , (7:1)

where

SK =
∑

(x,x+1)∈K

|x+ 1, R〉〈x,R|+
∑

(x,x−1)∈K

|x− 1, L〉〈x, L|+

∑
(x,x+1)6∈K

|x, L〉〈x,R|+
∑

(x,x−1) 6∈K

|x,R〉〈x, L| . (7:2)
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Both definitions depend on the configuration of edges K ⊆ E and we set the reflection operator R = σx.

We start by employing the pure state ansatz of Chapter 6 to construct some part of the attractor

space. For that we must search for common eigenstates of the dynamics, which is done by solving the

local coin conditions (6:11) and shift conditions (6:9). We repeat that equations (6:11) determine the

possible eigenvalues α corresponding to the common eigenstates (6:1) and also the structure of internal

coin states. These internal coin states are then bound to each other via shift conditions (6:9).

To continue the analysis it is crucial to understand the difference between the shift conditions on p-

attractors (6:12) and non-p-attractors (5:13) in our model. Let us denote a matrix element of p-attractor

Y in the natural basis as

〈s1, c1|Y |s2, c2〉 = Y s1,c1
s2,c2 . (7:3)

Using this notation we rewrite shift conditions (6:12) as

Y s1	1,L
s2	1,L = Y s1,R

s2,R
= Y s1,R

s2	1,L = Y s1	1,L
s2,R

∀s, s1, s2 ∈ V . (7:4)

We repeat that the latter equation describes the shift condition requirements on the elements of p-

attractors. On the other hand, general attractors for the same system have the shift conditions (5:22),

(5:23) and (5:24). A closer second look reveals that (5:22) is the same condition as (7:4), thus the only

difference is given by the less restrictive conditions (5:23) and (5:24).

In summary, the complete attractor space can be constructed as follows. First, using (6:11) one can

determine the possible α eigenvalues and corresponding internal coin states. Second, employing the pure

state shift conditions (6:9) all common pure eigenstates can be constructed. Using an orthogonalization

process, a corresponding orthonormal basis must be formed from the eigenstates. Next, according to

(6:3) all p-attractors can be constructed, along with the corresponding |λ| = 1 superoperator eigenvalues.

Then, by allowing the general constraints (5:23) and (5:24), the attractor space must be extended to

non p-attractors. In this way at least one additional attractor, proportional to identity, will be found,

which is the trivial solution. We note that the different boundary conditions are handled by the shift

conditions in all cases. Thus, if s1(2)	 (⊕)1 belongs to a reflecting boundary (in a case of the line graph),

the corresponding equations must be omitted from the set of shift condition equations.

Let us move on to solve the problem explicitly for the complete SU(2) group of coins, and for arbitrary

N number of vertices. We parametrize the coins as

C(α, β, γ) =

 (ei(α+γ) − ei(γ−α)) cosβ sinβ e−iα cos2 β + eiα sin2 β

eiα cos2 β + e−iα sin2 β
(
ei(α−γ) − e−i(α+γ)

)
cosβ sinβ

 (7:5)
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with β 6= k ·π/2 | k ∈ Z and α 6= k ·π | k ∈ Z. Thus we exclude coins leading to a trivial scenario in which

the resulting dynamics merely relabels quantum states and does not invoke any interference effect. In

fact, such special cases without any quantum interferences represent a purely classical process, thus can

be solved using a classical stochastic description.

We solve (6:11) to gain the possible eigenvalues of common eigenstates and its associated local coin

states: The spectrum of the matrix σxC(α, β, γ) is {eiα, e−iα} with corresponding eigenvectors |v1〉C =(
cosβ, eiγ sinβ

)T , |v2〉C =
(
sinβ,−eiγ cosβ

)T . Equipped with this knowledge, by employing (6:9) one

can construct the following orthonormal basis of common eigenstates for a percolation chain

|φ1〉 =

(
(cotβ)2 − 1

(cotβ)2N − 1

)1/2
{
N−1∑
s=0

(cotβ)se−iγs|s〉P ⊗ |v1〉C

}
, (7:6)

|φ2〉 =

(
(tanβ)2 − 1

(tanβ)2N − 1

)1/2
{
N−1∑
s=0

(− tanβ)se−iγs|s〉P ⊗ |v2〉C

}
(7:7)

with respect to the spectrum {eiα, e−iα}. The proof is the following. Any common eigenstate correspond-

ing to eigenvalue eiα can be be written in the form |φ〉 =
∑

s as|s〉P ⊗ |v1〉C . Using shift conditions (6:9)

we get as+1 = e−iγas cotβ. Normalization yields the single common eigenstate (7:6). Following the same

steps one can show that (7:7) is the second common eigenstate, corresponding to the eigenvalue e−iα.

We note that these eigenstates are exponentially localized at the boundaries of the system (considering

the position distribution), for most of the coin operators. Thus, they can be termed as edge states. We

discuss these states in more detail in Section 7.2.

In view of equation (6:3), all p-attractors can be constructed directly from common eigenstates (7:6)

and (7:7). Thus the p-attractor subspace corresponding to eigenvalue λ1 = 1 is two-dimensional with

the orthonormal basis {|φ1〉〈φ1|, |φ2〉〈φ2|} and p-attractor space corresponding to the eigenvalue λ2 =

exp (2iα) (resp. eigenvalue λ3 = exp (−2iα)) is one-dimensional with orthonormal basis {|φ1〉〈φ2|} (resp.

{|φ2〉〈φ1|}). In the special case α = π/2, both eigenvalues λ2 and λ3 are equal to−1 and the corresponding

p-attractor subspace is two-dimensional with orthonormal basis {|φ1〉〈φ2|, |φ2〉〈φ1|}.

We find ourselves at the position where we should sort out which attractors remained undiscovered

by the pure state method, i.e. attractors which are non-p-attractors. In order to answer this question,

we have to employ the general separation method. We first determine the dimension of each attractor

subspace corresponding to a given eigenvalue λ.

This is straightforward for the attractors associated with λ = exp (2iα) for α 6= π/2. According to

equations (5:16) and (5:17) the general structure of the corresponding coin blocks is one-dimensional

X(s,t) = u(s,t)

 cosβ sinβ −eiγ cos2 β

eiγ sin2 β −e2iγ cosβ sinβ

 . (7:8)
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Let us assume that the coin blockX(0,0) is determined, i.e. the free parameter u(0,0) is set. Shift conditions

for the general attractors (5:22), (5:23) and (5:24) determine all other coin blocks, thus all other u(s,t)-s are

determined by the parameter u(0,0) which is then naturally fixed by normalization (5:9). Consequently,

the general attractor subspace associated with eigenvalue λ = exp (2iα) is one-dimensional, thus, equal to

the subspace of p-attractors. Similarly, one can easily see the same equivalence among general attractors

and p-attractors associated with eigenvalue λ = exp (−2iα).

We repeat the same procedure, for the λ = 1 eigenvalue. It turns out that the structure of coin blocks

is two-dimensional

X(s,t) =

 v(s,t) c1u
(s,t)

c∗1u
(s,t) c2u

(s,t) + v(s,t)

 (7:9)

with c1 = exp (−iγ) sinβ cosβ and c2 = − cos (2β). Each coin block is determined by two parameters

u(s,t) and v(s,t). Let us fix the linear parameters u(0,0) and v(0,0) of the diagonal coin block X(0,0). The

less restrictive shift conditions (5:23) and (5:24) of general attractors determine only the linear parameter

u(0,1) leaving the parameter v(0,1) free. Once this remaining free parameter is fixed, no free parameters

remain due to shift conditions (5:22), (5:23) and (5:24). Thus, the attractor subspace associated with

eigenvalue λ = 1 is three-dimensional. In order to get all three elements of this subspace it is sufficient

to take the p-attractors of eigenvalue λ = 1 and add the identity, i.e. the trivial solution.

The last difficulty arises in the degenerate case when coin parameter α = π/2 which leads to the

degenerate superoperator eigenvalue λ = −1. By employing (5:16) and (5:17) we find that the general

structure of the coin blocks corresponding to attractors of λ = −1 is

X(s,t) ≡ D
(
u(s,t), v(s,t)

)
=

 d1
(
u(s,t) + v(s,t)

)
d∗2v

(s,t)

d2u
(s,t) −d1

(
u(s,t) + v(s,t)

)
 (7:10)

with d1 = −1/2 tan (2β) and d2 = exp (iγ). Repeating the same steps as above, one can find that

the attractor subspace associated with λ = −1 is three-dimensional. As the subspace of p-attractors

associated with eigenvalue λ = −1 is only two-dimensional, we miss one attractor. In order to construct

such attractor we derive a recurrent formula for coin blocks of p-attractors and attractors. Assume that

we know one of the coin blocks X(s,t). Then using shift conditions for p-attractors (7:4) one can show

that neighboring coin blocks of p-attractors are determined by formulas

X(s,t+1) = D

(
−d2
d1
u(s,t) − d1d2

(
u(s,t) + v(s,t)

)
, d1d2

(
u(s,t) + v(s,t)

))
, (7:11)

X(s+1,t) = D

(
d1d
∗
2

(
u(s,t) + v(s,t)

)
,−d

∗
2

d1
v(s,t) − d1d∗2

(
u(s,t) + v(s,t)

))
. (7:12)
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In the view of these relations we can immediately have two observations. First, all coin blocks of a p-

attractor are determined by a single coin block only. Consequently, the subspace of p-attractors associated

with λ = −1 is two-dimensional indeed. Second, if one coin block is zero, then all other coin blocks and

the whole p-attractor is inevitably zero. In other words, p-attractors corresponding to λ = −1 cannot

have a zero coin block. On the contrary, for general attractors shift conditions are less restrictive. Thus,

formulas for the neighbors of the diagonal coin blocks X(s,s) read

X(s,s+1) = D

(
−d2
d1
u(s,s) − v(s,s+1), v(s,s+1)

)
,

X(s+1,s) = D

(
u(s+1,s),−d

∗
2

d1
v(s,t) − u(s+1,s)

)
. (7:13)

We observe that the linear parameters v(s,s+1) and u(s+1,s) are not determined by parameters of the

coin block X(s,s+1). Coin blocks X(s,s+1) and X(s+1,s) are bound to each other by the shift condition

(5:24) and thus only one of these two parameters is free in fact. In order to define an attractor X

associated with λ = −1 we have to specify two parameters of its coin block X(0,0) and one parameter

v(s,s+1). All other coin blocks are determined by shift conditions for attractors (5:22),(5:23) and (5:24).

To construct the last missing independent attractor it is sufficient to choose coin block X(0,0) as zero

matrix (u(0,0) = v(0,0) = 0) and set the linear parameter v(s,s+1) = 1. All other coin blocks are defined

by shift conditions (5:22),(5:23) and (5:24). Apparently, the attractor constructed in this recurrent way

cannot be a p-attractor.

An elegant analytical form of this recurrently constructed missing attractor for λ = −1 is not known

so far. Using the numerical simulation data, by induction we found that the missing attractor can be

written in the closed analytical form

Xπ/2 = X−1F
†EF , (7:14)

where

X−1 =
N−1∑
s=0

(−1)s√
2N
|s〉P 〈s|P ⊗

 1 0

0 −1


C

. (7:15)

F is the discrete Fourier transformation operator acting on position states

F =

N−1∑
s,t=0

ei2πst/N |s〉P 〈t|P ⊗ IC . (7:16)
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E is the block diagonal matrix

E =
N−1⊕
g=0

1

i sin
(
2gπ
N − γ

)
− cot 2β

 i sin
(
2gπ
N − γ

)
e−i2πg/N cot 2β

ei2πg/N cot 2β i sin
(
2gπ
N − γ

)
 . (7:17)

Let us summarize the complete list of attractors. First, we consider the case with coin parameter

α 6= π/2. For the percolation line the attractor space is five-dimensional.

Z1 = |φ1〉〈φ1|,

Z2 = |φ2〉〈φ2|,

Z3 = 1√
2N−2 (IP ⊗ IC − Z1 − Z2)

 for λ1 = 1

X = |φ1〉〈φ2|, for λ2 = e2iα

X̃ = |φ2〉〈φ1|, for λ3 = e−2iα . (7:18)

On the percolation cycle graph the pure eigenstates of the line graph ( |φ1〉 and |φ2〉 ) vanish if they

are not translation-invariant. Consequently, |φ1〉 is a common eigenstate on cycles if (cotβ)Ne−iγN = 1

is satisfied. Likewise, for |φ2〉 the equation (− tanβ)Ne−iγN = 1 needs to be true. We note that only

on cycles with even number of edges both eigenstates might be available. For (cotβ)Ne−iγN = 1 the

attractor space of the cycle consists {Z1, Z3}, and when (− tanβ)Ne−iγN = 1 the attractor space is

spanned by {Z2, Z3}. When both conditions are met, the attractor space of the QW on the percolation

cycle is the same as on the percolation line (7:18). We note that satisfying the above conditions allowing

states |φ1〉 and |φ2〉 will result a flat position distribution. That is, they will not localize exponentially at

the boundaries of the graph. This property is clearly understandable as the cycle graph has no dedicated

boundaries due to the translation invariance.

For the degenerate case α = π/2 the additional attractor Xπ/2 (7:14) is always present on the percol-

ation line. The shift conditions require translation invariance for the attractors on the percolation cycle.

X−1 is the only building block in the definition of Xπ/2 ( i.e. equation (7:14) ), which might restrict such

translational invariance, hence Xπ/2 appears in the attractors space of cycles with an even number of

vertices only.

The explicit form of attractors given above confirms two important properties of studied asymptotic

dynamics. First, coin blocks of attractors corresponding to λ 6= 1 (while |λ| = 1) are strictly traceless, i.e.

should one trace out the coin degree of freedom, the remaining position density matrix strictly depend

on just the λ = 1 attractors. Consequently, if one is interested in the position density operator (e.g. want

to calculate the position distribution), only attractors corresponding to λ = 1 , i.e. Z1, Z2 and Z3 are
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needed for the calculation. Second, all position density operators are stationary in time,

ρP (n) = TrC ρ(n) = TrC ρ(n+ 1) = ρP (n+ 1) where n� 1 (7:19)

Consequently, limit cycles or other non-stationary asymptotic dynamics might be observable only in the

coin degree of freedom.

7.2. Edge states

It is well known that the position distribution of a classical walk on a connected undirected graph

converge to the uniform distribution. This result is independent of the choice of a graph and from the

initial distribution of the walk. In contrast, we found that the asymptotic position distribution can be

nonuniform on the percolative quantum walks we study, despite the strong decoherence. Moreover, one

can observe the existence of the so-called edge states with exponentially decaying position distributions.

Indeed, both common eigenstates (7:6) and (7:7) exhibit this behavior. We stress that this interesting

effect in one-dimension only arises on the line graph — on the cycle graph such states cannot be observed

since they do not fulfill the translation invariance required by the periodic boundary conditions.

In order to study this behavior in more details, let us denote the initial state of the walker by ρ0.

After sufficiently many iterations we reach the asymptotic evolution, which according to (5:8) can be

written as

ρ(n) = O1Z1 +O2Z2 +
1−O1 −O2√

2N − 2
Z3 +R where n� 1 . (7:20)

Here, Oi denotes the overlap of the initial state ρ0 with common eigenstate (7:6) and (7:7), i.e. Oi =

Tr{Ziρ0}. They satisfy relation O1 + O2 ≤ 1. The traceless operator R refers to the overlap of the

initial state ρ0 with attractors X, X̃ and Xπ/2. However, this part does not contribute to the asymptotic

position distribution of the walker, which reads

P (s) = 〈s|TrC ρ(n)|s〉 = N
(
O1q

N−1−s +O2q
s
)

+
1−O1 −O2

2N
where n� 1 . (7:21)

We definedN = (q−1)/(qN−1) and q = tan(β). The first term in (7:21) clearly displays the exponentially

decreasing behavior from the left edge to the right, and then from a certain minimum an exponentially

increasing probability towards to the right edge. The minimum depends on initial overlaps Oi. If one

of these overlaps is zero one can observe a monotonous exponential behavior. The second term of the

position distribution (7:21) is constant and might dampen the exponential behavior slightly.

One can ask the following question: which coins result in the most prominent edge states, i.e. where
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the exponential localization is the most significant. One can easily infer that this occurs if β is close to

the values k · π/2|k ∈ Z. That is, the coin is almost a permutation matrix. Surprisingly, the exponential

localization behavior of the asymptotic position distribution is also available for unbiased coins, i.e. whose

matrix elements have the same amplitude. A short calculation reveals that these are coins C(α, β, γ)

which follow condition |sin(α) sin(2β)| = 1/
√

2. From this condition one can see that the most significant

behavior is obtained for β = π/8 and α = π/2, which corresponds to the coin

C(α = π/2, β = π/8, γ) =
i√
2

 eiγ −1

1 e−iγ

 . (7:22)

Thus, even for unbiased coins we can get strong exponential behavior of the position distribution (7:21)

with q = (tan(β))2 = 3− 2
√

2 ≈ 0.1716.

7.3. Conclusions

The refined methods given in the previous sections — the separation technique for general attractors

and the pure state ansatz — provide a useful toolset for investigating the asymptotic properties of discrete

time quantum walks on percolation graphs, even when the addressed problem is rather general. In this

chapter we have successfully employed these tools and explicitly solved the problem for one-dimensional

percolation graphs.

First, we used the pure state ansatz and constructed the pure common eigenstates explicitly. From

these states the corresponding p-attractors are built. In the following we employed the general formalism

for percolation walks, to extract the missing non-p-attractors. We obtained closed form solutions using

the general SU(2) coin classes while also keeping the number of vertices of the underlying graph (N) as

a free parameter.

We observed that these one-dimensional systems can exhibit a rich variety of asymptotic behaviors.

Apart from stationary asymptotics keeping some quantum coherence of the initial state, periodic and quasi

periodic limit cycles can occur due to the appearance of the λ = exp (±2iα) superoperator eigenvalue.

However, the attractor subspace corresponding to such limit cycles are strictly composed from attractors

with zero trace in all coin sub-blocks. Consequently, limit cycles are not observable in the position

density operator (position distribution), i.e. actual asymptotic dynamics is restricted to the coin degree

of freedom only.

By studying the walk on the line graph we discovered that the pure eigenstates in most cases have the

form of edge states, which are exponentially localized at the dedicated boundaries of the system. These

states also demonstrate the usefulness of the attractor space formalism: the exponent of the localization
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for edge states and also coins leading to the most pronounced effect are obtained easily.

The results presented in this chapter are amongst the first closed form analytical results which showed

the long time dynamics of quantum walks on percolation graphs. The appearance of any forms of

coherence in such systems in the asymptotic limit were first discussed here.





Chapter 8

Two-dimensional quantum walks on percolation graphs

The natural step following the solution of the general one-dimensional problem of percolation quantum

walks is to move to higher dimensions. Two-dimensional quantum walks ( See Sec. 1.1.2 ) are straight-

forward generalizations of one-dimensional quantum walks, extending the basic definitions to two-

dimensional graph. However, due to the much broader selection of coins available, i.e. SU(4) for

4-regular two-dimensional lattices, these walks exhibit a richer variety of effects. In fact, the complete

map of behaviors and effects under the total SU(4) family of coins are yet to be explored.

The percolation theory of two-dimensional graph structures is much richer compared to the one-

dimensional percolation graphs. The most interesting effect is undoubtedly the appearance of the non-

trivial phase transition ( See Chapter 4 ). For example, on a two-dimensional Cartesian lattice if the

probability of the edges to be missing is higher than 1/2 the probability for finding an infinite connected

component is exactly zero.

In this chapter we join these two interesting areas and through concrete cases we reveal some unexpec-

ted effects. We extend and employ the methods we developed for studying quantum walks on percolation

graphs to the two-dimensional case. We reveal that albeit dynamical percolation is a homogeneous noise,

it can break a certain rotational symmetry in walks. Moreover, we show that the trapping effect of

the Grover-walk surprisingly survives the decoherence of the dynamical percolation. Finally, we draw

conclusions.

8.1. Description and asymptotics

The Hilbert space of the two-dimensional QWs is a composite one: H = HP ⊗HC , where the position

space HP is spanned by states corresponding to the vertices of a two-dimensional Cartesian lattice with

M ⊗ N sites, and the coin space HC is spanned by vectors corresponding to nearest neighbor steps:

|L〉, |D〉, |U〉, |R〉 — we expand all 4-by-4 matrices in this basis respectively. A single step of the time

evolution on a percolation graph is given by equations (5:4) and (5:5). We define the reflection operator

as R = σx ⊗ σx.

To solve the asymptotic dynamics of such a system, first one have to find all p-attractors — in analogy

with the one-dimensional case (cf. Chapter 7) . This can be done by employing equation (6:1) as

SK (IP ⊗ C) |ψ〉 = α|ψ〉. (8:1)
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We separate this equation into a local coin condition with one chosen edge configuration

SK(IP ⊗ C)|ψ〉 = α|ψ〉 (8:2)

and to a set of shift conditions

SK′S
†
K|ψ〉 = |ψ〉 ∀K,K′ ⊆ E . (8:3)

Let us expand a pure state in the natural basis |ψ〉 =
∑

s,t,c ψs,t,c|s, t〉P ⊗ |c〉. Employing this notation,

we can rewrite the shift conditions (8:3) as

ψs,t,R = ψs	1,t,L

ψs,t,U = ψs,t	1,D

 ∀(s, t) ∈ V . (8:4)

Here we note that in the shift conditions the boundary conditions must be taken into account: The

equations corresponding to the amplitudes where the wavefunction is outside of the graph with reflective

boundaries (carpet graph) should be omitted. The periodic boundary conditions (torus graph) are taken

into account by using modulo M(N) operations.

After one successfully constructed all pure common eigenstates, by employing (6:3) all p-attractors

can be built in a straightforward way. As in the one-dimensional case, all such p-attractors satisfy the

shift condition

SLS
†
KY SK′S

†
L′ = Y ∀K,K′,L,L′ ⊆ E . (8:5)

However, one can see that general attractors must satisfy a less strict condition

SK′S
†
KY SKS

†
K′ = Y ∀K,K′ ⊆ E . (8:6)

Consequently, one can investigate the differences between the two latter sets of shift conditions, and

construct all missing non-p-attractors. The whole process is analogous to the method we give in Chapter

7. However, since the dimension and the possible degeneracies in the system are higher, the analysis is

much more involving. In fact, the vast number of special (e.g. degenerate) sub-cases makes the most

general problem using SU(4) coins practically unsolvable in a closed form. However, as we show in the

following, investigating just some special cases can lead to unexpected results.
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8.2. The two-dimensional Hadamard walk: breaking the directional

symmetry

The two-dimensional Hadamard walk (cf. Section 1.1.2) is a direct generalization of the one-

dimensional Hadamard walk, using the tensor product form coin

H(2D) = H ⊗H =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 , (8:7)

where

H =
1√
2

 1 1

1 −1

 , (8:8)

is the well known coin operator of the one-dimensional Hadamard walk (cf. Section 1.1.1). In the

undisturbed case this coin exhibits a spreading behavior, which is characterized by peaks propagating

from the origin at a constant velocity. In the percolation case first we solve (6:11) to obtain the spectrum

of common eigenstates resulting in the set of eigenvalues {i,−i, 1, 1}. The corresponding eigenvectors

of the RH(2D) operator are |v1〉C = 1
2(1,−i,−i,−1)T , |v2〉C = 1

2(1, i, i,−1)T , |v3〉C = 1√
2
(1, 0, 0, 1)T

and |v4〉C = 1√
2
(0, 1,−1, 0)T , respectively. We find the following orthonormal basis of common pure

eigenstates on the percolation M ×N carpet

|φ1〉 =
M−1∑
s=0

N−1∑
t=0

(−1)s√
MN

|s, t〉P ⊗ |v1〉C , (8:9)

|φ2〉 =

M−1∑
s=0

N−1∑
t=0

(−1)s√
MN

|s, t〉P ⊗ |v2〉C , (8:10)

|φ3(t)〉 =
M−1∑
s=0

1√
M
|s, t〉P ⊗ |v3〉C , (8:11)

|φ4(s)〉 =
N−1∑
t=0

(−1)t√
N
|s, t〉P ⊗ |v4〉C . (8:12)

The next step is to prove the completeness, i.e. that these are indeed all pure common eigenstates

available. For that we apply shift conditions (8:4) on the coin eigenstates |vi〉C . In the case of the

α = i eigenvalue a general common eigenstate must have the form |φ〉 =
∑

s,t as,t|s, t〉P ⊗ |v1〉C . Thus,

we get as+1,t = −as,t and as,t+1 = as,t, thus a single eigenvector is found and it takes the form (8:9).
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Similarly, for α = −i a single vector (8:10) is found. For α = 1 the general form of a common eigenstate

is |φ〉 =
∑

s,t |s, t〉P ⊗ (as,t|v3〉C + bs,t|v4〉C). Applying the shift conditions we find as,t = as−1,t and

bs,t = −bs,t−1. This means M + N free parameters, thus an M + N dimensional subspace of common

eigenstates with basis vectors (8:11) and (8:12).

Now, we have to determine the remaining attractors which cannot be constructed from common

eigenstates. Like in the one-dimensional case, non p-attractors can be searched in a diagonal form. Thus,

solving the local equation (5:15) for a diagonal coin block for λ = 1 imposes

B =


a c C A

d b B D

−D B b −d

A −C −c a

 , (8:13)

where a − A = b + B and D − d = c + C. As we require only diagonal coin blocks to be nonzero, and

also for them A = B = C = D = c = d = 0, thus a = b. This means that all diagonal coin blocks are

proportional to identity Xs,t
s,t = as,tI. Due to shift conditions all as,t are equal, thus a single attractor

is revealed to be proportional to the identity, i. e. we found the trivial attractor as the only additional

non-p attractor. Similarly, one can show that for the other possible attractor eigenvalues there are no

additional non p-attractors. In summary, all attractors can be constructed employing (6:3) and adding

the trivial attractor proportional to identity. Thus, the solution presented here is complete.

Let us have a look on the influence of boundary conditions on the available eigenvectors. It should

be noted that |φ1〉 and |φ2〉 are not available for periodic boundary condition in the s-direction with odd

M . In a similar way |φ4〉 is not a common eigenstate for periodic boundary condition in the t-direction

with odd N . From the α = {i,−i, 1, 1} pure state eigenvalues the possible attractor space eigenvalues

are λ = {1,−1, i,−i}. For the λ = 1 eigenvalue, for all boundary conditions

X0 = I (8:14)

X1(t1, t2) = |φ3(t1)〉〈φ3(t2)| (8:15)

are valid attractors, spanning a 1+N2 dimensional space. For evenM -s on periodic boundary conditions

in the s direction or open boundaries in the s direction additional attractors

X2 = |φ1〉〈φ1| (8:16)

X3 = |φ2〉〈φ2| (8:17)

form a two-dimensional space. When in the t direction the system is open or periodic with even N -s the
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additional

X4(s1, s2) = |φ4(s1)〉〈φ4(s2)| (8:18)

X5(s1, t2) = |φ4(s1)〉〈φ3(t2)| (8:19)

X6(t1, s2) = |φ3(t1)〉〈φ4(s2)| (8:20)

attractors become available, forming an M2 + 2MN dimensional space.

For the superoperator eigenvalue λ = i, for even M -s in the s direction or open boundaries in the s

direction

Y1(t2) = |φ1〉〈φ3(t2)| (8:21)

Y2(t1) = |φ3(t1)〉〈φ2| (8:22)

attractors are available spanning a 2N dimensional space. The following attractors appear in addition if

either we have open boundary condition in the direction t or we have periodic boundary condition for t

with even N :

Y3(s2) = |φ1〉〈φ4(s2)| (8:23)

Y4(s1) = |φ4(s1)〉〈φ2| . (8:24)

In that case the dimension of the attractor space is increased by 2M . The form of definition (5:7) implies,

that the attractors corresponding to the conjugate λ = −i eigenvalue are simply the hermitian conjugate

of the attractor space matrices corresponding to λ = i.

The last possible superoperator eigenvalue is λ = −1, with the attractors

Z1 = |φ1〉〈φ2| (8:25)

Z2 = |φ2〉〈φ1| (8:26)

available when direction s is open or periodic with even M , adding a two-dimensional space to the

attractor space. Altogether, the maximal number of attractors for carpet (open boundaries) or for an

even-times-even torus (periodic boundaries) are (M +N + 2)2 + 1.

Let us now analyze the consequences one can draw from the explicit form of the eigenvectors (8:9) -

(8:12) for the asymptotic behavior of the walks. The common eigenvectors |φ1〉 and |φ2〉 in (8:9), (8:10)

are uniform in position. When the asymptotic state can be expanded by these, then the asymptotics

will be uniform in position. In contrast, the other two families of eigenvectors |φ3(t)〉 and |φ4(s)〉 in

(8:11), (8:12) are spatially non-uniform. The asymptotic states built by them will have ridge like stripes.
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Figure 8:1. Asymptotic position probability distributions P of the two-dimensional Hadamard walk on the torus
graphs, starting from the initial state: |7, 7〉P ⊗ 1√

2
(|L〉C + |D〉C). The plot on the left corresponds to the 15× 16

percolation torus and the plot on the right corresponds to the 16 × 15 percolation torus. Due to the 90 degree
rotation of the underlying graph (and the initial state), the position distribution changes considerably. For the
unitary (percolation-less) case the symmetry breaking is not observable within numerical precision.

Therefore, the boundary conditions for which |φ3(t)〉 or |φ4(s)〉 are allowed can lead to a non-uniform

asymptotic position distribution. While dynamical percolation means a spatially homogeneous source of

decoherence, it may result in a spatially inhomogeneous asymptotic distribution. However, these states

are not edge states like in the non-uniform one-dimensional walks. In contrast with the two-dimensional

counterpart the Hadamard walk on a one-dimensional percolation lattice always results in a uniform

distribution in position.

Further analyzing the asymptotically inhomogeneous solutions we find that percolation can cause the

breaking of the directional symmetry, in the following sense. Taking a certain initial state the undisturbed

(unitary) two-dimensional Hadamard walk may show a directional symmetry for the position distribution:

if both the graph and the initial state are rotated by 90 degrees the resulting position distribution will

also be a rotated version of the original position distribution at all times. In a numerical example we

demonstrate that introducing percolation in this system can break the above directional symmetry.

Let us consider the example of a torus with size even-times-odd. A quantum walk with percolation

on such a torus will have an attractor space with dimension (N + 2)2 + 1. In contrast, if we rotate the

graph (odd-times-even torus) while keeping the coin operator the same, we find an attractor space with

dimension (N +M)2 + 1. This change in the dimension of the attractor space clearly demonstrates the

symmetry breaking. Furthermore, by examining the corresponding eigenvalues we find that in the second

case (odd-times-even torus) only the λ = 1 eigenvalue occurs, leading to stationary asymptotic states.

Whereas in the first case (even-times-odd torus) also the λ = {−1,±i} eigenvalues will be included in

the solution possibly allowing for oscillations in the asymptotic state of the system. In figure 8:1. we plot

the asymptotic position distributions for the two cases. Numerical simulations of a Hadamard walk on
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Figure 8:2. Trapping (localization) of Grover walks (see section 8.3) on the 15× 15 torus (periodic boundaries).
The plot on the left shows the distribution after 1000 steps if unitary time evolution on a perfect graph. The plot
on the right shows an asymptotic position distribution of the Grover walk on a percolation graph. Both walks are
started from the initial state |7, 7〉P ⊗ 1

2 (|L〉+ |D〉+ |U〉+ |R〉). The localization property is observed both for the
closed and open system dynamics. This effect is due to the common eigenstates of the system with finite support
(cf. equation (8:28) ). We note that in the percolation (plot on the right) case the peak is not as high as for the
unperturbed walk.

tori without percolation show no difference between even-times-odd and rotated odd-times-even systems

within numerical precision. Thus, we conclude that the directional symmetry breaking is induced by

percolation. This is a new effect which was not reported before.

8.3. The Grover-walk: preserving trapping on percolation lattice

Two-dimensional quantum walks driven by the Grover coin (cf. Section 1.1.2)

G =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 (8:27)

gained a considerable interest in the literature, due to their use in quantum search (See Section 1.1.3)

and also by exhibiting the property of trapping (localization). This latter phenomenon is the inability of

some part of the wave function to leave its initial position due to destructive interference of the outgoing

waves. That is, a walker started from a localized initial state can be always found at its initial position

with a finite probability, except for a single well-defined initial state.

In the following, we show the attractor space of the Grover walk. The common eigenstates defined



84 8.3 The Grover-walk: preserving trapping on percolation lattice

via equation (8:1) have the explicit form of

|φ1〉 =
1√

4MN

M−1∑
s=0

N−1∑
t=0

|s, t〉P ⊗ |v1〉C , (8:28)

|φ2(s, t)〉 =
1√
8

{
|s, t〉P ⊗ |v2〉C + |s, t⊕ 1〉P ⊗ (|v2〉C + |v3〉C)

+|s⊕ 1, t〉P ⊗ (|v2〉C + |v4〉C)

+|s⊕ 1, t⊕ 1〉P ⊗ (|v2〉C + |v3〉C + |v4〉C)
}
, (8:29)

|φ3(s)〉 =
N−1∑
t=0

(−1)t√
2N
|s, t〉P ⊗ |v3〉C , (8:30)

|φ4(t)〉 =
M−1∑
s=0

(−1)s√
2N
|s, t〉P ⊗ |v4〉C , (8:31)

where |v1〉C = (1,−1,−1, 1)T , |v2〉C = (1, 1, 0, 0)T , |v3〉C = (0,−1, 1, 0)T and |v4〉C = (−1, 0, 0, 1)T .

These eigenstates correspond to the eigenvalues α = {−1, 1, 1, 1}, respectively. The addition denoted by

⊕ takes the boundary conditions into account: for reflecting boundary conditions (e.g. carpet) the part

of the states leaning over the boundary of the graph should be omitted (its amplitude is zero and the

corresponding superposition state is normalized accordingly), and for periodic boundary conditions (e.g.

torus) the addition ⊕ corresponds to modulo operations with respect to the graph size.

Using these common eigenstates all p-attractors can be constructed by employing equation (6:3).

Performing the general analysis results that the only non-p-attractor is the trivial one, which is propor-

tional to identity. Thus, the total number of attractors is (MN +M +N + 1)2 + 1 for all carpets, and

(MN + 1)2 + 1 for tori if M or N are odd. However, in the latter case (8:30) and (8:31) are restricted by

the periodic boundary conditions — they cannot be used to construct attractors. When M and N are

both even in the case of tori, a single additional state from (8:30) or (8:31) can be chosen as an additional

common eigenstate. This results in an attractor space with total number of attractors (MN + 2)2 + 1.

Analyzing the structure of the eigenstates reveals their connection with the effect of trapping. The

common eigenstates |φ2(s, t)〉 have finite support. Consequently, these states cannot be sensitive to

boundary conditions, thus one can expect that they remain common eigenstates even on an infinite

system. Moreover, these states are responsible for the trapping (localization) effect: An initially localized

state overlapping with a |φ2(s, t)〉 state can always be found at its initial position with finite probability.

The trapping effect for the percolation graph is illustrated in figure 8:2. In addition, the family of pure

localized eigenstates |φ2(s, t)〉 form a subspace which is free from the decoherence effects of the dynamical

percolation. Such decoherence-free subspace might be quite useful, e.g. serve as a quantum memory.

We have to make one more remark about these trapping eigenstates. In the literature of quantum walks

localization (trapping) is a phenomena corresponding to the behavior of the system, namely that at the

origin the probability of finding the particle is non-vanishing. However, this definition is not really suitable
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for all systems, e.g. on finite systems, where naturally the wavefunction cannot escape. At the same

time, as we have shown in this very section, trapping is due to the appearance of exponentially localized

eigenstates. Consequently, we point out that the phenomena called "trapping (localization)" in quantum

walks might be more general when it would refer to exponentially localized stationary eigenstates, instead

of a recurrence property only meaningful on infinite graphs.

8.4. Conclusions

Moving from one- to two-dimensional quantum walks introduces a lot of new and interesting effects.

Similarly, the problem of percolation is much more diverse for two-dimensional lattices. In this Chapter

we studied two-dimensional quantum walk models on percolation graphs with different boundaries: the

torus and the carpet, corresponding to the periodic and reflective boundary conditions.

The first walk we studied is the two dimensional generalization of the Hadamard walk. We have

constructed the attractor space explicitly and pointed out the important differences in contrast with the

one-dimensional counterpart: First, the asymptotic distribution of the two-dimensional Hadamard walk

can be non-uniform. Second, the percolation can induce a rotational symmetry breaking to the system,

which is not observable in the closed system dynamics.

The second model is the Grover walk. Here, we found that the trapping behavior of the closed system

surprisingly survives the decoherence effect of the percolation. This is apparent from the common pure

eigenstates with finite support. These states are fixed points of the dynamics, moreover they span a

decoherence free subspace. Thus they might be used to preserve quantum information. We also have

to note that these eigenstates point out that the "trapping (localization)" property of quantum walks

can be tied to eigenstates, thus can be generalized to finite graphs, whereas the original definition of

localization is only suitable for infinite graphs.

The general problem of two-dimensional walks on percolation lattices requests the solution of the

complete SU(4) problem. Practically, this problem would be very cumbersome to solve, and the number

of special sub-cases induced by degeneracy would deny any closed form solutions. Nevertheless, subsets

of the SU(4) with lower number of parameters might be explored using the methods we showed here.





Chapter 9

Entropy rate of quantum walks

Quantum mechanical systems can be disturbed in several ways. Like in the case of percolation

quantum walks, one can couple the system to a noisy environment, making the system open. Another

approach is naturally given through quantum mechanics: measurement. One could raise the question:

How much quantumness a system can keep if it is frequently measured? Our goal is to connect the answer

to this question to the information content of the data obtained from the frequent measurements using

the entropy rate.

Entropy rate quantifies the asymptotic per symbol information content of a discrete time stochastic

process (which can be a frequently measured quantum system), as we reviewed it in Chapter 2. of Part

I. For such stochastic processes the entropy rate replaces the entropy in the asymptotic equipartition

property. Classical walks, which are classical Markov chains, are the typical textbook examples for the

entropy rate. One can address the previous question from approaching from this direction too: What is

the entropy rate of the quantum generalization of the classical walk? Does its entropy rate reflects some

of its quantum properties? In this chapter we study these questions in detail. We develop analytical

methods to calculate and approximate the entropy rate of periodically measured quantum walks. Through

this we intend to investigate the classical-quantum transition in terms of classical information theory.

This chapter is organized as follows: First, we sketch the model we wish to study in Sec. 9.1. Next,

to give a reference point, we calculate the entropy rate of certain periodically measured classical random

walks. Then, in Sec. 9.3 we define a scenario in which the quantum walks serve as a signal sources. In

Sec. 9.4 we give an explicit method to calculate the exact entropy rate of this model. In the following, we

explicitly calculate the entropy rate of the one-dimensional Hadamard walk for frequent measurements.

Due to the computational complexity of the method giving the exact rate, we give an upper bound

protocol through the hidden Markov model, and we determine the scaling of the entropy rates in Sec.

9.6. In Sections 9.7 and 9.8 we discuss two other approaches for calculating the entropy rate: the “most

quantum" scenario and the “quantum entropy rate". Finally, we draw conclusions.

9.1. Periodically measured walks in a black box

We consider the following scenario. Let us assume that we have a source of information in a black box.

We know that there is a physical process inside, which generates classical messages. However, this process

might be either a classical random walk or some quantum process generating classical information. We
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post that the quantum process has a well defined classical counterpart: If decoherence is significant,

it becomes a classical random walk. A suitable choice is the discrete time quantum walk (QW) (See

Chapter 1.1). Assuming such black box, we can utilize the apparatus of classical information theory

to compare the classical random walk model with one of its quantum generalizations. There are two

reasons behind the usage of the black box terminology: First, we want to hide the quantum or classical

walk inside. Second, we restrict the number of tools available: the black box performs all quantum and

classical measurements, the only information available is the position measurement outcome. We stress

that we do not go beyond the concepts of classical information theory. Instead, we utilize them in order

to learn more about the classical-quantum transition: What is the difference between a classical and

quantum walk driven black box from the point of view of entropy rates? Does the periodically measured

quantum walk keep some of its coherence?

The first problem we encounter is due to the measurement which disturbs a quantum system, thus

the measurement protocol should be defined properly. We choose to periodically measure the same

quantum walk over and over again. (Another approach would be to perform every measurements on a

new, undisturbed system: we address this most-quantum scenario later.) The next problem is due to the

correspondence of quantum walks with classical walks: Frequent position measurements, mean a strong

decoherence for QWs, thus a classical walk. We overcome this problem by making the measurements less

frequent, i.e. the walker residing in the black box are not measured after every single steps, but we let

it evolve for more steps. In this way we hope that some of the characteristic quantum behaviors of the

system can be observed in the entropy rate. In the following we determine the entropy rate of periodically

measured classical walks to give a reference point for the quantum case.

9.2. Entropy rate of some classical random walks

We remark here that for a general classical walk as a stationary Markov process, the entropy rate,

according to Eq. (2:13), is the average of the entropy of the rows of the probability transition matrix taken

with the stationary probability of each vertex 7. In particular, if the stationary distribution is uniform

and, for some symmetry reason, the rows are permutations of each other (thus having the same entropy),

the entropy rate is simply the entropy of a row. That is, in the graph picture, the process is equivalent

to a sequence of independent identically distributed random variables describing the random decision

taken by the walker in each step. This reasoning will be applicable in some of the cases we discuss here.

An unbiased (isotropic) classical random walk (CW) on a d-regular simple graph, for instance, has the

entropy rate of log2 d: wherever we find the walker, it has d equal-probability edges to follow (isotropy),

7 As each row corresponds to a vertex where the walker may stand in a step, and each column to an edge pointing to a
possible vertex it can jump to.
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and the stationary distribution is obviously uniform. Hence, in this model, for every step we need log2 d

classical bits to encode the direction where the walker has moved randomly.

Now let us consider a simple one-dimensional walk on a finite cycle with M vertices, i.e. the walker

in every steps moves one step to the left or to the right with the same 1/2 probability. Suppose, that

we intend to encode the position only at every w-th step of the walk. That is, the position of the walker

is measured at every w-th steps. We call the parameter w as waiting time, which will also be the time

we wait between two subsequent quantum measurements in the corresponding quantum protocol. The

system under consideration is translation-invariant (homogeneous in space): The transfer probabilities

Px→x+δ between arbitrary lattice sites x and x+ δ depend only on the difference (distance) δ of the two

sites. Thus, we can introduce the probability of a δ length step

p(δ) ≡ Px→x+δ . (9:1)

In systems obeying this symmetry, it is common to encode the difference δ of the actual random position

outcome from the previous random outcome, leading to the usage of at most w+ 1 symbols, thus a finite

alphabet. It is straightforward to see that the two encoding methods — encoding the absolute position

outcomes and encoding the relative position differences — are equivalent. From (2:13) and (9:1) one can

readily give the entropy rate as

HCW
w = −

w∑
δ=−w

p(δ) log2 p(δ) , (9:2)

which after a short calculation results in

HCW
w = 2−w

w∑
i=0

(
w

i

){
w − log2

(
w

i

)}
≈ 1

2
(−1 + log2 πew) , (9:3)

which is the Shannon entropy of the binomial distribution and the Gaussian distribution respectively.

Note that the 1/2 pre-factor is a consequence of the diffusive spreading of the CW. Note that Eq. (9:3) is

valid for both infinite and finite systems, as long as w �M . For finite M and rates that are high enough

(in one-dimensional cycle graphs, for instance, this occurs for w > M/2), the walker mixes with itself,

making the rate given by Eq. (9:3) inaccurate. In this case the sequence becomes a series of independent

random variables with a uniform distribution over the accessible positions, thus the entropy rate becomes



90 9.3 Discrete time quantum walks as stochastic processes

the upper bound of the possible entropy rates,

Hlimit =

 log2M for oddM

−1 + log2M for evenM
. (9:4)

The difference caused by the parity is due to the fact that the positions accessible for the walker may

be restricted. In a one-dimensional cycle graph with even number of sites (M), the walker, from a

given position, can reach either the even or the odd labeled sites only, depending on the waiting time w.

Therefore, even for the limiting w � M , only half of the sites can be reached by the walker. For cycles

with an odd number of sites, this restriction does not hold. Naturally, for an infinite line (M →∞) the

upper limit of Eq. (9:4) does not exists and the entropy rate is always given by (9:3).

We can conclude that the entropy rate of a process arising from a one-dimensional classical walk with

waiting time w is simply the Shannon entropy of the distribution of the shifts. Note that for the sake of

readability the sum in Eq. (9:2) is taken between −w and w; however, since the classical walker leaves

its position in every step, there is a parity correspondence between w and p(δ), thus we have w + 1

symbols to encode at most. In the next section we extend the concept of entropy rate to sources driven

by quantum walks by closely following the procedure presented in this section.

9.3. Discrete time quantum walks as stochastic processes

We consider discrete time quantum walks (QWs), as defined in Section 1.1.1, thus, following the time

evolution in Eq. (1:7). We repeat here that quantum walks are unitary, thus deterministic processes.

However, we wish to use them as the source of messages (classical random variables). Thus, we have to

introduce measurement into the system. We closely follow the procedure we employed for the classical

case in the previous section: We let the walker evolve unitarily for w steps and we measure its position

afterwards. This is the definition of a single iteration step in our process. Following that, we repeat this

iteration step over and over on the same system. Should someone measure the position of the walker,

she will get a random position x with probability

p(Xk = x) ≡
∑
c′

∣∣〈x, c′|ψk〉∣∣2 , (9:5)

where |ψk〉 = Uw|ψk−1〉 is the Hilbert vector corresponding to the quantum state of the QW at the kth

iteration step. The corresponding Xk is the random variable describing the position outcome at the

kth iteration. From now on, we consider the sequence of Xk random variables as the stochastic process

generating the message we wish to encode efficiently — i.e. Xk realizes (describes) the output of the
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quantum walk equipped black box.

As it is given in Eq. (1:7), the QWs considered here are translation-invariant (homogeneous):

〈y, c|U t|x, c〉 ≡ 〈y ⊕ δ, c|U t|x⊕ δ, c〉 for all x, y, t, δ, c . (9:6)

Consequently, in place of encoding the xk measurement outcomes, one can encode position differences

δ = xk − xk−1. Note that this encoding simplification does not affect the value of the entropy rates. In

fact, it is the standard notation for systems with translation invariance8.

The proposed definition of a QW-driven message source has a well-defined classical connection: Should

one consider an unbiased coin matrix C (with all complex elements having the same absolute value in

the natural (computational) basis), a quantum walk measured in every single step (waiting time w = 1)

behaves exactly like a classical unbiased (isotropic) walk.

Throughout this chapter we will use the 2× 2 Hadamard matrix (cf. Eq. (1:15) )

CH =
1√
2

 1 −1

1 1

 , (9:7)

driven one-dimensional quantum walks as our concrete example, unless stated otherwise. We use the

Hadamard coin since it is unbiased, thus we have a very well controlled quantum-classical transition at

our hands: measuring the walk after every steps ( w = 1 ) results a classical walk.

9.4. Solution — employing the quantum Markov property

This section is dedicated to derive an explicit formula giving the entropy rate of periodically measured

QWs in the black box. To achieve this we will use the quantum Markov chain nature of discrete time

quantum walks, and employ the coin state as a key encoding aid while doing so. We will formally address

the one-dimensional problem, but we stress that the results we give here could be generalized for higher

dimensional QWs in easily.

To begin, we calculate the joint probability distribution p(xN , xN−1, . . . , x1) of the possible black box

outputs (position measurement outcomes). Employing Eq. (9:5), the joint probability distribution of the

random variable sequence Xk is given by

p(xN , xN−1, . . . , x1) = Tr
(
SxNU

wSxN−1U
w . . . Sx1U

wρ0(U
w)†Sx1 . . . (U

w)†SxN−1(Uw)†SxN

)
,

(9:8)

8 Equivalently, the original problem can be rephrased so the black box outputs the relative position differences δ instead
of absolute positions. This rephrasing does not change the entropy rate of the system.
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where

Sx = |x,R〉〈x,R|+ |x, L〉〈x, L| (9:9)

is the projector of the von Neumann measurement corresponding to the position |x〉P ( cf. Eq. (1:9) )

and ρ0 = |0, c0〉〈0, c0| is the initial state of the one-dimensional QW in the black box. Next we employ

the definition in Eq. (2:2) to obtain the entropy rate. We stress that we have to use the original definition

as we are not considering a classical Markovian process here — in contrast with classical walks which are

always Markovian processes.

Calculating (9:8) and therefore the actual entropy rate in the asymptotic limit is demanding. In fact,

if one would wish to calculate it using brute force methods, one would encounter an exponential usage of

resources. In the following, we present a method to make the calculation manageable. It is based on the

fact that the transition probabilities between subsequent measurement outcomes depend on a parameter

which in fact can be taken into account: It is the internal quantum coin state, which carries additional

information in the following sense.

After every position measurement, the wave function collapses to a single position site, but the in-

formation carried in the coin degree of freedom that particular site survives the process: It serves as the

initial coin state in the following iteration. After acquiring any position measurement outcome (a black

box output) Xk = x, since the evolution of QW is unitary (deterministic) until the position measure-

ment, the full quantum state of the actual collapsed QW can be reconstructed with the knowledge of

the full quantum state of the preceding (initial) iteration. In summary, the coin degree of freedom serves

as a memory, carrying some information about the previous steps. The importance of this observation

is twofold: First, the information carried in this internal memory can be used to improve our encoding

method. Second, we use the coin to aid our calculation of the joint probability distribution, thus the

entropy rate.

One can argue that all unitary quantum walks are quantum Markov chains by construction, thus the

coin is not really a memory but it describes the state (as in information theory) of the quantum system

in the actual iteration step. However, here we consider a function of the original quantum Markov chain

(the quantum walk), i.e. we just gather the position measurement outcomes. With this respect the black

box outputs can be described with a hidden Markov model, where the original (underlying) Markov

chain is a quantum Markov chain: the two are connected with the nonlinear function of the position

measurement process. However, as we have described above, this function can be inverted, i.e. the coin

state can be determined, and used to predict outcomes, making the output encoding efficient. In this

sense, our encoding might be considered as the actual efficient encoding of the periodically measured

quantum Markov chain, since all quantum states of the time evolution can be reconstructed from the
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classical data. This observation is one of our main results.

Let us employ this knowledge to solve the entropy rate problem. We intend to use the coin as the

hidden continuous parameter of the model, by introducing an extended, Px,α→y stochastic transition

matrix, where α is an abstract continuous parameter representing the internal coin state. The definition

of the transition matrix is

Px,α→y ≡ Tr
{
SyU

w|x, α〉〈x, α|(Uw)†
}
. (9:10)

Suppose that we know the initial (previous) quantum state of the system. The quantum state of the next

iteration step can be calculated as follows:

|y〉P ⊗ |C(x, y, α)〉C ≡
SyU

w|x, α〉√
Tr {SyUw|x, α〉〈x, α|(Uw)†}

, (9:11)

where we defined function C(x, y, α) giving the unambiguous coin state. By employing these definitions

in Eqs. (9:8) and (9:9) we arrive to

p(xN , xN−1, . . . , x1) =

P0,c0→x1Px1,c1→x2Px2,c2→x3 . . . PxN−1,cN−1→xN ,

(9:12)

where ci = C(xi−1, xi, ci−1) and c0 corresponds to the initial coin state.

Let us use the translation invariance (9:6) of the system. We shall see that

pc(δ) ≡ Px,c→x+δ = Py,c→y+δ (9:13)

and

C(δ, c) ≡ C(x, x+ δ, c) = C(y, y + δ, c) (9:14)

for all values of x, y, and δ. Thus

p(xN , xN−1, . . . , x1) = p

(
N∑
i=1

δi,

N−1∑
i=1

δi, . . . , δ1

)
= pc0(δ1)pc1(δ2) . . . pcN−1(δN ) , (9:15)

where ci = C(δi, ci−1) and δi = xi − xi−1 with x0 = 0. Note that the product form of the probability

indicates the true Markov chain like nature of the system: The probability of any outcome can only depend

on the previous quantum state of the system, that is, the internal coin state and its position (which is
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in the δ difference picture is neglected due to translation invariance). Moreover, this description reveals

that the system in question is time invariant, in the sense that the defining matrices Px,α→y are time

independent. Formulated in other way, the solutions of the system are invariant under shifting of the

time ( see Eq. (2:4) ). This will allow us to employ the definition of entropy rate for time stationary

processes in Eq. (2:5).

The Shannon entropy of the joint distribution (9:15) can be calculated readily using the chain rule as

H(XN , XN−1, . . . , X1) =
N∑
i=1

H(Xi|Xi−1, . . . , X1)

= −
N∑
i=1

∑
α∈CS

νi−1(α)
w∑

δ=−w
pα(δ) log2 pα(δ) ,

(9:16)

where

νi(α) =
w∑

δ=−w

∑
β∈C−1(δ,α)

νi−1(β)pβ(δ) , (9:17)

gives the distribution of coin states at the ith iteration step. Here,

C−1(δ, α) ≡ {β ∈ CS | C(δ, β) = α} , (9:18)

and

ν0(α) ≡ δα,c0 . (9:19)

In our notation, the δ symbol with two indices ( δα,c0) is the Kronecker δ. By CS we denote the continuous

set of all abstract coin states. The entropy rate is then given by taking the limit as in Eq. (2:2),

H(X) = lim
N→∞

1

N
H(XN , XN−1, . . . , X1)

= − lim
N→∞

1

N

N∑
i=1

∑
α∈CS

νi−1(α)
w∑

δ=−w
pα(δ) log2 pα(δ) . (9:20)

Since we discovered the time invariant (quantum) Markov chain nature of the system, we can employ the
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alternative definition (2:5) of the entropy rate. Thus,

H(X) = H ′(X) = lim
N→∞

H(XN |XN−1, . . . , X1)

= − lim
N→∞

∑
α∈CS

νN−1(α)
w∑

δ=−w
pα(δ) log2 pα(δ)

=
∑
α∈CS

µ(α) ·H(pα(δ)) , (9:21)

where µ(α) = limN→∞ νN (α) is the asymptotic distribution of coin states 9.

In summary, the method of calculating the entropy rate is the following: First, one should determine

the asymptotic coin distribution µ(α). Then pα(δ) shift probabilities can be determined easily using

formulas in Eqs. (9:10) and (9:13). Finally, the entropy rate can be obtained using (9:21). Note that the

method proposed here can be applied directly for both finite or infinite systems. Also it can be extended

in a straightforward way to higher dimensional quantum walks, as we have not used the dimensionality

of the walk. The remaining task at hand is to determine the asymptotic coin state distribution µ(α),

which we address in the following section.

9.5. Calculating the entropy rate of one-dimensional QWs

So far we have found that the quantum Markov chain nature of QWs can be employed to formally

determine the entropy rate of the periodically measured system in the black box. However, we are yet

to obtained any exact values for the entropy rate. Only one step is missing, which is to calculate the

asymptotic coin distribution µ(α). In this section we show a way to determine the asymptotic coin

distribution, and also explicitly calculate the entropy rate of some QWs.

The asymptotic coin distribution µ(α) can be calculated by defining a stochastic matrix,

Pα→β =
w∑

δ=−w

∑
χ∈C−1(δ,β)

δα,χpχ(δ) , (9:22)

which gives the probability that from an α coin state after applying Uw the walker is found in the β

coin state after the position measurement. It is straightforward to see that Pα→β is indeed a stochastic

9 Coins states CS does not form a continuous set due to the discrete rotation of the coin operator, thus a summation
symbol in Eq. (9:21) is sufficient.
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matrix,

∑
β∈CS

Pα→β =
∑
β∈CS

w∑
δ=−w

∑
χ∈C−1(δ,β)

δα,χpχ(δ)

=

w∑
δ=−w

pα(δ) = 1 . (9:23)

After constructing the complete Pα→β transition matrix, the µ(α) asymptotic coin distribution can be

readily found as the stationary state of the stochastic matrix Pα→β . One can see that the number of coin

state “touched" during the time evolution can be infinite. That would yield an infinite stochastic matrix.

We will address this problem later in the current section.

One-dimensional QWs have some symmetries which can be employed to make the calculation of the

transition matrix more efficient. First, one-dimensional QWs have a spin-flip symmetry. This symmetry

implies that, compared to the general initial coin state l|L〉C + r|R〉C , the orthogonal r∗|L〉C − l∗|R〉C

produces a mirrored position probability distribution. We use a single important consequence of this

property: A walk started from |L〉C produces the exact same amount of entropy for any w waiting times

as the walk started form |R〉C , i.e.

H (pL(δ)) = H (pR(δ)) . (9:24)

Second, for one-dimensional Hadamard QWs,

Pα→L + Pα→R ≥ 2(1−w) for all α ∈ CS . (9:25)

Moreover, for arbitrary mixing coins of one-dimensional QWs using the coin operator

C =

 e −f

f∗ e∗

 (9:26)

with |f |2 + |e|2 = 1 and e, f 6= 0

Pα→LR ≡ Pα→L + Pα→R ≥ |e|2(w−1) for all α ∈ CS . (9:27)

Here, we defined the summarized transition probability for the abstract “joined” coin state LR. This

property has an immediate consequence: The black box based on a QW always forgets its initial state.

Since from an arbitrary coin state a transition to LR happens according to Eq. (9:27) the part carrying

information about the initial state c0 at the iteration step k is proportional to (1− |e|2(w−1))k, which in

the asymptotic k →∞ limit tends to 0. This observation is one of our main results.
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Figure 9:1. Convergence of the numerically calculated partial entropy rate [cf. Eq. (2:9)] H2 for w = 2 waiting
time. We have evaluated the definition of Eq. (2:2) for the first n iteration steps, using the joint probability
distribution in Eq. (9:8). We used the one-dimensional QW with Hadamard coin (see Eq. (9:7) ); the triangles and
circles correspond to the walk started from initial states |ψ0〉 = |0, L〉 and |ψ0〉 = 1√

2
(|0, L〉+ |0, R〉), respectively.

The continuous line corresponds to the analytically determined rate for the simulated model: HQW
2 = 4/3 bits.

The dashed line corresponds to the rate of the CW : HCW
2 = 3/2 bits.

Using the method we have given above it is straightforward to determine the entropy rate of the QW

with w = 2 as the simplest, nontrivial case,

HQW
2 =

4

3
bits. (9:28)

The details of the exact calculation using this approach can be seen in Appendix A. For reference,

the entropy rate of the classical walk for w = 2 is 3/2 bits as given by Eq. (9:3). We numerically

approximated the entropy rate using the original definition of Eq. (2:2), for finite n’s [cf. Eq. (2:9)]. We

illustrate the results in FIG. 9:1. The 4/3 bits rate associated with QWs contradicts the assumption that

due to ballistic spreading the entropy rate should be higher. In fact, revealing the coin as a carrier of

information, thus extracting more information from simple position measurement outcomes, allows for a

more efficient prediction of the next step, essentially leading us to a more efficient source coding method

— and a lower entropy rate. However, it should be noted that for higher w waiting times the ballistic

spreading will eventually dominate the scaling of the entropy rate, i.e. the rate of the QW will surpass

the rate of the CW. We discuss this question in the next section.

The above given process is adequate when µ(α) is nonzero for only a finite number of α coin states,

i.e., the number of coin states arising under the full time evolution is finite. In this case, the size of Pα→β

is finite too. However, depending on the coin operator and the waiting time we choose, the Pα→β matrix

can grow to infinite size. This issue can be solved by introducing a truncated (finite) basis. This will

cause an uncertainty in the entropy rate. Let us introduce the set of unknown coin states: |?〉C , which

we use when we do not wish to consider (calculate) the elements of Pα→β further. In other words, the
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abstract set “?" collects all the coin states which the system does not touch up to the iteration step k, i.

e.,

? = {α ∈ CS | νi(α) = 0 for all i ∈ [0, k]} , (9:29)

where νi(α) is the coin state distribution at the ith iteration step as given in Eq. (9:17). It is important

to note that the rule of Eq. (9:27) applies to “?" as well, and it should be employed to make the truncated

Pα→β matrix a proper stochastic matrix.

Since the value H(p?(δ)) is unknown, Eq. (9:21) cannot be used. Fortunately, bounds for H(p?(δ))

can be calculated in a straightforward manner as

Hmax = max
α∈CS

H(pα(δ)) (9:30)

and

Hmin = min
α∈CS

H(pα(δ)) . (9:31)

Considering this, the value of the exact entropy rate (9:21) are in the interval

H(X) =
∑
α 6∈|?〉

µ(α) ·H(pα(δ)) +
µ(?)

2
(Hmax +Hmin ± {Hmax −Hmin}) . (9:32)

We use the compact form with a ± sign to denote the interval where the exact entropy rate resides.

The now proposed truncating method can be applied to approximate the entropy rates for arbitrary

w’s. We note that by increasing w the size of stochastic matrices grows rapidly:

dim (Pα→β) ≈ 1

w − 2

[
(w − 1)k+1 − 1

]
+ 1 , (9:33)

where k is the number of iterations of the procedure we take during the calculation of the matrix (Pα→β) —

and is also in the definition (9:29). Similarly, the scaling of µ(?) can be approximated as it is proportional

to the relative error of the calculated entropy rate. After a lengthy, but straightforward calculation this

turns out to be

µ(?) ≈ (1− |e|2(w−1))k+1 , (9:34)

where we used |e|2(w−1) from Eq. (9:27). If we fix the precision (the value of µ(?)) and the coin (parameter

e) in the last expression, we find that with the increase of w the number of iterations k needed to achieve

a fixed precision increases exponentially. Despite the problem blows up exponentially with the increase
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Figure 9:2. Entropy rates Hw of the periodically measured walks on a one-dimensional line as functions of
waiting time w. The circles correspond to the entropy rate HCW

w (see Eq. (9:3) ) of the classical walk. We used the
Hadamard coin of Eq. (9:7) for the quantum walk. The black disks correspond to the exactly calculated entropy
rate HQW

w given by Eq. (9:21), while the vertical line segments correspond to the interval defined by the lower
and upper bound on the entropy rate in Eq. (9:32). The number of iterations is given in Table I. The rectangles
correspond to the upper bound entropy rate Hbound

w defined in Section 9.6, while the continuous line represents
the analytic approximation Happrox

w of Eq (9:41).

of w, we found that our method converges much faster than mere brute force simulation. This is due to

the fact that the approximations (9:33) and (9:34) are based on a worst-case scenario, while as it can be

seen in the explicit calculations, the convergence of the µ(α) distribution is much better. Also, we have

to note that our method aimed to calculate the entropy rate only, whereas in brute force simulations one

would calculate the total joint probability distribution and then employ the basic definition — which is

naturally much more resource consuming. To achieve an even lower computational cost in our method,

one can extend the proposed simplifications — by use of the spin flip symmetry — in order to find further

isentropic states like the ones in Eq. (9:24).

We have also determined the entropy rate of w = 3 walks using the given methods. For the one-

dimensional Hadamard QW the approximative calculation resulted

HQW
3 = 1.499± 0.004 ≈ 3/2 bits . (9:35)

In comparison, the CW walk has the entropy rate of HCW
3 = 3 − (3 log2 6)/(8 log2 2) ≈ 2.031 bits. The

details of the calculation can be seen in Appendix B. We illustrate our results in Fig. 9:2 and Table I.

In the following we give an upper bound for the now determined entropy rate which is easier to

measure or compute. We will also discuss the scaling of the entropy rate of QWs with respect to the

waiting time w.
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w Number of iterations
3 11

4 10

5 10

6 4

7 4

> 7 3

Table I. Number of iterations used to calculate entropy rate for the periodically measured quantum walk illustrated
in Fig. 9:2. The rapid drop in the number of iterations for w ≥ 6 is due to the memory limitation of the current
implementation.

9.6. Upper bound for the entropy rate

Here we describe a protocol which will give us an easy-to-understand and compute upper bound to the

entropy rates of QWs. If one is not aware of the quantum nature of the walk on which the information

source (the black box) is based, she or he might follow a measurement protocol which is suitable for

classical walks, thus ignoring the internal quantum coin state. In this case the outputs of the black box

are assumed to be described by a classical Markov chain. The absence of the additional information

carried by the coin leads to a less efficient encoding and, thus, higher entropy rates. This statement is

also supported by the fact that a function of a Markov chain — a hidden Markov chain — has a higher or

equal entropy rate than the original chain [141], meaning essentially an upper bound (and lower encoding

efficiency).

Let us propose the protocol which ignores the hidden coin (memory) of the QW in the black box. The

measurement protocol consists of the following steps:

1. Initialize the black box: this puts the walker to state |0, c0〉. Set position indicator x = 0.

2. Let the black box work: The walk evolves for w steps. Following, the black box von Neumann

measures the position. Finally, the black box outputs a random position outcome y ∈ [x	w, x⊕w].

3. Make a note that a x→ y transition happened.

4. Repeat from 2. with y (the current position state) as the new x.

After applying the protocol above for infinitely many times, the probabilities of x → y transitions can

be calculated as relative frequencies. In this way, a stochastic transition matrix Px→y describing the

QW-driven process is obtained. We stress that in this way it is implicitly assumed that the system can

be described via a time stationary classical Markov chain — which is not true for the QW based system.

Finally, the entropy rate is calculated using Eq. (2:13).

We again use the translation invariance ( See. Eq. (9:6) ) of the system to get rid of the infinite

alphabet (positions): instead of absolute positions we encode the δ shifts. Like in the classical case, we
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introduce p(δ) by Eq. (9:1), which is the probability of a δ length shift. Finally, the upper bound entropy

rate Hbound
w can be readily determined by Eq. (9:2): It is the Shannon entropy of the distribution of the

arising position differences (shifts) in the stationary case.

We numerically calculated the upper bound for one-dimensional QW and the actual entropy rate of

one-dimensional CW-driven black boxes using the above upper bound protocol. We used the Monte

Carlo method to numerically simulate the behavior of the black boxes, repeating the protocol until p(δ)

appeared to converge. We found that p(δ) corresponding to the one-dimensional QW in all cases converges

to

p(δ) =
∑

c={L,R}

Tr
{
|δ, c〉〈δ, c|Uwρ̃0(Uw)†

}
, (9:36)

where

ρ̃0 =
1

2

 ∑
c′={L,R}

|0, c′〉〈0, c′|

 (9:37)

is a state localized at a single position with a completely mixed coin. Note that since ρ̃0 is completely

mixed in coin space, the effect of the initial |c0〉 is lost, which is expected for a Markov chain. This result

is in perfect agreement with our result given in the previous section: The system always forgets its initial

state.

To illustrate the possible effects appearing on finite systems, we also performed simulations with finite

M -cycles (one-dimensional cycle graphs with M vertices). Increasing w beyond M/2 in such a system

causes an interesting effect: The CW starts to evolve towards the uniform distribution. As a consequence,

the entropy rate becomes close to its absolute bound Hlimit defined in Eq. (9:4). In contrast to that, QWs

do not mix due to the unitary nature of the system. Consequently, the self-overlap of the wave function

might induce fluctuations in the entropy rate. In this self-overlapping regime the entropy production of

CWs are usually higher.

Increasing the w waiting time even further, the unitary nature of QWs eventually produces more

interesting effects in finite systems: a behavior similar to collapses and revivals [178] can be observed

in the upper bound of entropy rate as a function of w and in the entropy rate itself. The appearance

of these phenomena demonstrates the fundamental difference between the unitary and stochastic time

evolutions. We illustrate these results in Fig. 9:3.

The result in Eq. (9:36) allows us to approximate the scaling of the entropy rate. For the approx-

imation we use the weak limit theory of quantum walks [161–163]. For high number of unitary steps

(high w’s) the shape of the symmetric probability distribution of a one-dimensional Hadamard QW can
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Figure 9:3. Entropy rate Hw of periodically measured walks as the function of waiting time w. We used QW
(triangles) with Hadamard coin ( see Eq. (9:7) ) and the unbiased CW (circles) on the cycle graph with 16 vertices.
For the QWs we plotted the protocol giving the upper bound. The straight line corresponds to the theoretical
entropy rate limit of Eq. (9:4): Hlimit = log2M − 1 = 3 bits. In the inset plot, we show traces of the collapse and
revive like effects on the same system for high w waiting times: For w = 216 the time evolution operator comes
very close to a simple permutation matrix, resulting in a very predictable behavior and an entropy rate upper
bound Hbound

216 ≈ 0.514 bits. Meanwhile, the CW is totally mixing, resulting in an unpredictable outcome, with
the maximal possible entropy rate Hlimit = 3 bits. We calculated all plotted data numerically using the Monte
Carlo method until convergence occurred.

be approximated with the formula

p(x,w) =
1

πw
√

1− 2x2

w2

(
1− x2

w2

) . (9:38)

This weak limit is valid for x ∈ [−w/
√

2;w/
√

2]. Note that this distribution corresponds to the rescaled

asymptotic position distribution of the Hadamard walk started from the initial state localized at the

origin, with a totally mixed initial coin state ρ̃0, as in Eq. (9:37). Consequently,

p(δ) = p(x,w)|x=δ . (9:39)

Employing (9:2) the upper bound of the entropy rate can be readily approximated by the integral

Happrox
w = −

∫ w/
√
2

−w/
√
2
p(x,w) · log2 p(x,w)dx , (9:40)

which evaluates to

Happrox
w ≈ −0.163164 + log2w . (9:41)

It is apparent that the scaling of the upper bound of entropy rate goes with log2w, in contrast with the

scaling of the classical system ( cf. Eq. (9:3) ), which goes with ≈ 1/2 log2w = log2
√
w. This result
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Figure 9:4. Upper bound of the entropy rate Hbound
w of a one-dimensional QW with Hadamard coin ( see Eq.

(9:7) ), denoted by circles, for infinite or finite (w � M) systems. We used high precision numerical simulations
on cycles with (w � M), and plotted the converged results. The dashed line corresponds to the analytically
calculated entropy rate of CWs ( see Eq. (9:3) ), while the continuous line corresponds to the weak-limit-based
approximation of Eq. (9:41).

can be interpreted as the consequence of the ballistic spreading of the QW. Our numerical calculations

showed that although the weak limit theorem predicts the log2w scaling in the long time limit, the actual

scaling of the upper bound rate is for lower waiting times are still close to the classical log2
√
w. Even for

the regime around w ≈ 500, we obtained scaling with log2w
0.94. We illustrate these results in Fig. 9:4.

We move on to discuss the scaling of the exact entropy rate HQW
w . Using the weak limit approach

calculating integrals similar to (9:40) reveal the scaling of other initial states, i. e., the initial states giving

the maximum and minimum entropy production Hmax and Hmin of (9:30) and (9:31). In both cases the

scaling is proportional to log2w, consequently, the precisely calculated HQW
w entropy rate is also scales

with log2w. Thus, the ballistic spreading dominates the entropy rate for high w values.

In summary, the measurement protocol proposed in this section gives a straightforward way to meas-

ure, calculate, and approximate the upper bound of entropy rates of QW driven message sources. Since,

the exact entropy rate can be quite hard to calculate, the easy-to-calculate and -measure upper bound is

a proper tool for distinguishing walks by their entropy production if the waiting times w is long enough.

We summarize the results given by all proposed methods in Fig. 9:2.

9.7. Analysis of independent systems — the “most quantum" case

The walkers living in the black box are measured periodically. During the definition of the system, we

explicitly stated that all measurements are performed on the same system. Every measurement means

a loss of coherence for quantum walks — thus a step towards the classical world. One can consider

the “most quantum" case, when at every iteration step the position measurement is carried out on a
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new, undisturbed system. That is, in the first iteration step we perform a position measurement on a

QW which took w undisturbed steps, and then we discard the system. In the second iteration step, we

perform a position measurement on another QW which took 2w undisturbed steps, and then we discard

the system. All further steps are performed accordingly. In fact, this “most quantum" approach is quite

popular in the literature of quantum walks, for example works dealing with the recurrence properties

[150–153] and hitting times [35, 147] use this approach.

For the most quantum case the Xk sequence of stochastic variables is given by

p(Xk = x) = |SxUw·k|0, c0〉|2 , (9:42)

where Sx is the position measurement projector given in (9:9) and c0 is the initial coin state of the

QW. Since the quantum systems are all independent, there are no correlations between subsequent

measurements, i.e. all Xk’s are independent random variables. In this case, the entropy rate calculation

reverts back to the calculation of the Shannon entropy (cf. Eq. (2:14) ):

Hmq = lim
k→∞

H(Xk) . (9:43)

Let us use our result about the scaling of the Shannon entropy for one-dimensional QWs on the infinite

line

H(Xk) ≈ log2 k . (9:44)

Employing this, the entropy rate of the system is

Hmq = lim
k→∞

H(Xk) = lim
k→∞

log2 k =∞ . (9:45)

This divergent result is a straightforward consequence of the spreading of the system on an infinite line.

In fact, one would obtain the same result for the entropy rate of independent classical walks.

Still, one can address a question about the entropy rates on finite systems. For the classical case

on finite cycles with odd number of edges, the entropy rate is given by Eq. (9:4) due to the mixing

behavior of the system. However, since in the quantum case the system is unitary, mixing does not

occur but collapses and revivals might appear as discussed in Sec. 9.6. Consequently, the entropy rate of

independent unitary QWs does not exist due to the lack of convergence. Similarly, for one-dimensional

CWs on cycles with even number of sites, due to the oscillation of the Shannon entropy limit given in

Eq. (9:4), the entropy rate does not exist. In summary, we draw the conclusion that for the case of the

independent systems — which is the “most quantum" scenario — the entropy rate is not a suitable tool
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for describing the per symbol asymptotic information generation.

9.8. The quantum entropy rate of periodically measured QWs

So far, we used the classical information theory description, and in particular the Shannon entropy.

However, when quantum mechanical systems are considered for information storage or encoding, the von

Neumann entropy

S(ρ) = −Tr (ρ log ρ) (9:46)

takes the place of the Shannon entropy. Operationally meaning, the von Neumann entropy gives the

maximum number of bits which can be encoded in the quantum mechanical system ρ without any

uncertainty (error). As the Shannon entropy appears in the definition of the entropy rate, one can

extend the definition of the von Neumann entropy too, to form the so-called quantum entropy rate [179]

Q = lim
N→∞

1

N
S(ρn) . (9:47)

This section is devoted to investigate our (quantum) black boxes with respect to this quantum entropy

rate quantity.

The QWs living in the black box are the perfect candidates for calculating the quantum entropy rate,

albeit the original protocol should be modified as follows. At every iterations we let the walker evolve

for w steps, after that we perform a non-selective position measurement. Thus, the state of the system

at iteration step N is

ρN =
∑
x

SxU
wρN−1 (Uw)† Sx , (9:48)

where Sx-s are the projectors of the von-Neumann position measurement, which for one-dimensional QWs

are given in (9:9). Considering the initial state ρ0, the quantum state at iteration step N is

ρN =
∑

x1,...,xN−1,xN

p(xN , xN−1, . . . , x1)×{
SxN

UwSxN−1
Uw···Sx1U

wρ0(Uw)†Sx1 ...(U
w)†SxN−1

(Uw)†SxN

p(xN ,xN−1,...,x1)

}
, (9:49)

where we used (9:8). Note that the operators in the curly bracket are proper density operators. The

spectra of ρN must be calculated in order to determine the von-Neumann entropy (9:46). However, it is
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straightforward to see that

S(ρN ) ≤ log (2 + 4Nw) (9:50)

for all N -s. At iteration step N the walker took Nw steps, thus the quantum state occupy a 4Nw + 2

dimensional subspace in the Hilbert space at most (including the coin space). Since the quantum state

with the highest von-Neumann entropy is the completely mixed state i. e. S = log (2 + 4Nw) , the

entropy rate of the walker at iteration step N cannot exceed this theoretical limit. Thus, the quantum

entropy rate of the periodically measured quantum walks are

Q = lim
N→∞

1

N
S(ρN ) ≤ lim

N→∞

1

N
{log (2 + 4Nw)} = 0 . (9:51)

Which holds true for all waiting times w. It is straightforward to see that this result holds for all QWs

both on finite and infinite systems. We can draw the conclusion that the quantum entropy rate (9:47) is

not suitable tool for our purpose.

9.9. Conclusions

In classical information theory, the asymptotic per symbol information content of a classical stochastic

process is given by the entropy rate. There are countless dynamical systems in physics, which produce

a sequence of symbols as the output, thereby realizing a classical stochastic process. In this chapter we

studied an example of physical systems enclosed in a black box: the periodically measured classical and

quantum walks. We posted the question whether the value of the entropy rate reflects some properties

of the walk enclosed in the box, and in particular, whether the quantumness of the walk is reflected in

the entropy rate? The quantum system enclosed in a black box is repeatedly disturbed by the project-

ive measurement. One can approach the previous question following a deeper line of thoughts: How

“quantum" a frequently measured system really is?

We have found that the entropy rates of the classical and the quantum mechanical models are indeed

different and they reflect some features of the underlying dynamics. Although we used the classical

definition of the entropy rate, the rich behavior of the quantum world is still apparent. We have given an

elaborate method to determine the exact entropy rate of one-dimensional discrete time quantum walks.

We have discovered that the internal coin state — which is not effected by the position measurements

— serves as a memory, which allows us to develop a more sophisticated coding, thus achieving a lower

entropy rate. In fact, quantum walks are quantum Markov chains, and despite the nonlinear functional

connection between the unitary quantum Markov chain and the corresponding periodically measured
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classical stochastic process, just from the subsequent position measurement values the total quantum

states of the walker can be reconstructed. In this sense, the best encoding given by the entropy rate can

be considered as the actual encoding of the quantum states of the periodically measured quantum walk.

This is one of our main results.

We have shown that the exact entropy rate of the quantum walks can be calculated as the expected

value of the Shannon entropy of the position distributions with respect to the asymptotic coin state

distribution. We found that in the case of frequent measurements the exactly calculated entropy rate can

be lower than the rate of classical walks, due to the improved predictability provided by the coin state.

We also gave an easy-to-measure and -calculate upper bound protocol that describes the entropy

production of one-dimensional QWs when the observer considers the output sequence as a classical

Markov chain, thus neglecting the information extractable from the subsequent outputs. In both the

approximate and the exact cases the scaling of the entropy rate tends to log2w for high w’s in contrast

with the log2
√
w scaling of the classical walks. This is due to the ballistic spread of quantum walks. Also,

in both cases we found that the entropy rate is independent of the initial state of the one-dimensional

QW.

To answer our original question regarding the quantumness of the walk hidden in the box with respect

to the entropy rate, we would suggest using either the exact or the approximate method depending on

the waiting time w (the time between subsequent position measurements). For low w-s the exact entropy

rate is easy to determine, and it is straightforward to distinguish between the classical and quantum

models. For w � 1 the log2w scaling produces higher entropy rates, and using the approximate protocol

is enough to distinguish the two possible walk models.

For the sake of completeness, we also investigated the “most quantum" scenario, where each position

von Neumann measurement is performed on a new, undisturbed system. In this case, the subsequent

outputs of the black box are independent random variables. We found that in this case the entropy

rate does not converge, neither for classical nor quantum walks, and consequently is not a suitable tool

for studying them. We have also studied the quantum entropy rate model where, the von Neumann

entropy replaces the Shannon entropy. For this study, we modified the definition of the black boxed

quantum walk: the box performes non-selective measurement instead of the default selecting position

measurement. However, we found that the quantum entropy rate is always zero.

The fact however that the periodically measured one-dimensional QW has a definite classical entropy

rate also provides that it can be simulated using a well-designed classical walk, at least in terms of the

black box output sequences. This statement is quite surprising as one can even reconstruct the quantum

states of the system just from the outputs. However, on the other hand the observed non-trivial behaviors

in the entropy rate: collapses-revivals, non-monotonicity suggest that the underlying system does not

follow the rules of a classical random walk. We note here that all our results given in this section
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are presented and valid for one-dimensional walks, but the developed methods are quite general, and

presumably could be applied for more general systems.



Summary

Introduction

Quantum walks [29–31, 34–37] are quantum mechanical extensions of classical random walks. As

random walks are suitable tools used in statistical physics and computational sciences, quantum walks

found their applications in quantum physics and quantum information theory [45, 46]. For example, they

are suitable models for describing quantum transport [39–41, 44], scattering [32, 170, 171] and topological

effects [57–60] in solid state materials. From the quantum information point of view, quantum walks are

considered universal computational primitives [54, 55]. Their simplicity and the rapidly growing number

of applications soon caught the attention of experimentalists, too. Quantum walks have been successfully

realized in a rich variety of physical systems, ranging from trapped atoms [110, 111] and ions [112, 113]

to various photonic systems [115–124].

The central focus point of this very thesis is the discrete time quantum walk (QW) (Sec. 1.1), which is

a non-trivial extension of the classical random walk. Here, the non-triviality is given by the introduction

of the so-called coin space, an internal Hilbert space, thus, the departure from the scalarity of classical

random walks. These QWs are unitary by design — they correspond to a closed system dynamics.

However, physical processes in nature are subject to noise in general, which might disturb the unitary

evolution of closed quantum systems, essentially leading to an open system dynamics. In this thesis we

studied quantum walks with some kind of disturbed time evolution.

In the first model we studied, the transport (step) process of the walk was disturbed by some noise

corresponding to classical randomness (See Chapter 4). We described this noise as a change in the

connectivity of the underlying graph given by dynamical percolation. To study this problem we adapted

the asymptotic theory for random unitary operations (See Chapter 3) and also developed it further to

suit our needs and to get a better physical insight.

Another way to break the unitarity of the QWs is naturally given through the apparatus of quantum

mechanics: measurement inevitably disturbs the unitary evolution. Frequent (e.g. periodic) selective

measurements result in a stochastic evolution between (quantum) states. We employ the tools of classical

information theory to characterize the information (or disorder) generation of such process in terms of

the entropy rate (See Chapter 2). As classical walks are the textbook example of the entropy rate, its

extension to QW based processes possibly can give us some deeper understanding on the fundamental

differences between simple classical and quantum mechanical systems.
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General method for determining the asymptotics of percolation quan-

tum walks

The first disordered system we studied is the discrete time quantum walk on dynamical percolation

graphs. In this model all edges of the underlying graph have a finite probability that they become broken

under unit time step, i.e. the walker cannot pass through at that given time step. The time evolution of a

discrete time quantum walk on a percolation (imperfect) graph is not trivial since percolation graphs are

non-regular. To bypass this non-triviality, we choose to maintain the unitarity by introducing reflections:

a walker cannot pass through the broken edge naturally, instead it suffers a reflection in its internal

coin degree (See Sec. 5.1). The complete, statistical time evolution is then given by a random unitary

operation (RUO map), which is also a trace preserving quantum operation (quantum channel).

We have adapted the general theory for solving the asymptotic dynamics of such RUO maps to the

general percolation quantum walk problem (See Sec. 5.3), with the crucial and most important part

being the construction of the attractor space: An invariant subspace of the RUO map. We have shown

that due to the product form of the discrete time quantum walk dynamics, the coin operator part and the

shift part — which also corresponds to the graph topology — can be solved independently. We termed

the coin part as “coin condition" and the shift part as “shift conditions". This separation technique

allowed us to parametrize the parts of the problem independently, thus, one might solve a given graph

for a family of coins, or a given coins for a family of graphs, or even both. We have illustrated that

on translation-invariant regular graphs the shift conditions simplify considerably allowing us to keep the

size of the graph as a free parameter (See Sec. 5.4). We note that the attractor space cannot depend on

the probabilities used at the construction of the RUO map as long as the set of unitaries used does not

change. This results that neither phase-transitions, nor any non-asymptotic effects can be observed in

the attractors.

Naturally, the size of these problems increases exponentially in the following sense. The RUO map

corresponding to the time evolution results from the summation of many (weighted) unitaries. The

number of unitaries goes with the number of possible configurations, which is exponential with respect to

the number of edges. We have shown that as discrete time quantum walks correspond to nearest neighbor

steps, thus, their unitaries are sparse matrices. Consequently, superoperators can be constructed in

polynomial time on regular graphs (See Sec. 5.2). We note that during our studies we performed

several numerical tests to confirm our analytical results and to generate figures, and we found this result

particularly useful.

In summary, our new results presented in Chapter 5 are the following. We have applied the asymptotic

theory of RUOs on percolation quantum walks. We have shown that a coin-step separation can be
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performed, allowing us to solve the problem in parts. Thus, more general problems can be addressed.

We showed that the shift conditions corresponding to the step part simplify considerably on regular

translation-invariant graphs (e.g. lattices), allowing for studying whole families of graphs at once. We

have also shown that the superoperators corresponding to the dynamics can be constructed polynomially

on regular graphs with respect to the number of sites. This is particularly useful in numerical analysis,

as the number of configurations grow exponentially with the number of sites, which would make any

brute-force approaches fruitless.

Pure state ansatz for random unitary operations

To determine the asymptotics of random unitary operations (RUO maps) one should find the so-called

attractor space. This invariant subspace is spanned by the fixed points of dynamics, called attractors.

These attractors could be considered as eigenoperators (eigenvectors) of the RUO map (superoperator)

corresponding to unit magnitude eigenvalues. However, there are no direct implications on the physical

meaning of attractors. In fact, the complete attractor space is a linear space, and the set of possible

asymptotic states (proper density operators) is a convex subspace within. In summary, the general theory

(See Sec. 3.2) for obtaining asymptotics of RUO maps provides only little help when someone wants to

focus on the physical relevance of attractors. Moreover, the attractors are linear operators on the Hilbert

space, thus their sizes scale quadratically with respect to the dimension of the Hilbert space, and naturally

their analysis is more involving than the analysis based on pure quantum states.

We have addressed the problem of giving a direct physical interpretation to attractors, and as a

by-product we managed to make the analysis much more easier to perform: We introduced the pure

state ansatz (See Chapter 6). The unitaries used for building up the RUO map can share common

eigenstates: pure states which are eigenstates of all building-block unitaries corresponding to the same

eigenvalues. We have shown that these states are fixed points of the RUO dynamics, thus they can be

used to form attractors of rank one. We termed these attractors as p-attractors. Moreover, the common

eigenstates span a decoherence free subspace, a subspace within the attractor space carrying relevant

physical meaning and importance. We have to note that naturally not all attractors can be constructed

via common eigenstates: the completely mixed state — a trivial attractor due to the unitality of RUO

maps — is one notable example of non-p-attractors. However, for some relevant RUOs the attractor

space is fully determined by p-attractors and the completely mixed state. In this case the asymptotic

time evolution is an incoherent mixture of the unitary evolution on the p-attractor space (decoherence

free subspace) and the completely mixed state projected to its orthogonal complement. Here we note

that this surprisingly compact asymptotics can be observed in some percolation quantum walks.
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To summarize, we have given a refined approach to determine the asymptotic attractor space of RUO

maps (Chapter 6). This approach is based on the construction of common eigenstates of the unitaries

building up the random unitary dynamics. Naturally, finding eigenstates is less involving then finding

eigenoperators of the RUO dynamics. Our pure eigenstate ansatz allows for giving a direct physical

meaning for relevant parts of the attractor space, e.g. the pure eigenstates form a decoherence free

subspace. We have also shown that not all attractors can be constructed from common eigenstates,

the completely mixed state being an obvious exception. However, in some physically relevant cases the

p-attractors resulting from the pure eigenstate ansatz and the trivial completely mixed solution span

the complete attractor space. We have shown that in this case the asymptotic dynamics is given as an

incoherent mixture of the unitary dynamics on the decoherence free subspace and the completely mixed

state on its orthogonal complement.

One-dimensional percolation walks: explicit solutions and edges states

The problem of discrete time quantum walks on one-dimensional percolation graphs is the first step

to understand a family of open systems. At the first glance one might see the problem being quite

straightforward: one-dimensional quantum walks are intensively researched and one-dimensional percol-

ation graphs seem to be rather trivial classically. However, the combination of these two basic models is

surprisingly new, and more interestingly non-trivial: Most of the studies performed on these systems are

either numerical or phenomenological and even numerical results are very limited by their exponential

computational costs (Sec. 4.2).

In Chapter 7 we applied our general method for percolation quantum walks (Chapter 5) in tandem

with the pure state ansatz (Chapter 6) to explicitly solve the most general SU(2) coin problem of

quantum walks on the percolation cycle and line graphs. These are the most basic examples of one-

dimensional graphs representing the reflective and periodic boundary conditions. We have acquired the

solution explicitly (Sec. 7.1). In most of the cases the attractor space consists of p-attractors and the

trivial completely mixed solutions, however, degeneracy in special cases might lead to another non p-

attractor. We have shown that the asymptotics are non-trivial and depend on the coin we choose: apart

from the trivial completely mixed asymptotic state, stationary states with some quantum coherence,

periodic and quasi-periodic asymptotic limit cycles might emerge. We have also shown that the actual

asymptotic dynamics (limit cycles) are only observable on the complete coin-position density operator —

the asymptotic position density operator is always stationary in time. These results are quite a departure

from the complete mixing of classical walks on percolation graphs.

We also commented on the physical form of the common eigenstates we found. They correspond to
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edge states (Sec. 7.2) on line graphs in most of the cases (for most coin operators). These edges states are

exponentially localized at the boundaries of the system. Apart from these states forming a decoherence

free subspace some interesting physical consequences can be drawn. For example, one can start the walk

in a pure state corresponding to a completely flat position distribution, to find the asymptotic state being

exponentially localized to one of the boundaries of the system. We again note that such effects cannot

be observed in classical percolation walks.

To give a summary, in Chapter 7 we have applied our methods to solve the asymptotic dynamics of

one-dimensional percolation walks explicitly. We have managed to solve the complete SU(2) problem on

the two basic one-dimensional graphs: the cycle and the line graph with N vertices. We note that these

results are amongst the first closed form, fully analytical solutions obtained for percolation quantum

walks. We have shown that the obtained asymptotics are rather non-trivial: apart from the classically

available complete mixture, stationary states having quantum coherence and limit cycles can appear. We

also analyzed the physical appearance of the solutions, and discovered that on the linear graph for most

of the coin operators edge states can appear, i.e. eigenstates exponentially localized at the dedicated

boundaries of the system.

Two-dimensional percolation walks: symmetry breaking and trapping

The natural step after completely solving a one-dimensional problem is to look at its higher dimensional

counterparts. Even just closed (unitary) quantum walks on two-dimensional lattices (Sec 1.1.2) exhibit

more colorful behavior in comparison with the one-dimensional model. A notable example being the

Grover trapping. Similarly, two-dimensional percolation graphs offer more challenges and, in addition,

more physically relevant problems, e.g. non-trivial phase transitions.

Similarly to the one-dimensional case, in Chapter 8 we applied our general method and the pure

state ansatz to investigate some special two-dimensional walks analytically. For that analysis we have

chosen the two most studied examples of two-dimensional walks: the Hadamard and the Grover walk.

For the underlying graph we considered two finite derivatives of the Cartesian square lattice: the carpet

corresponding to reflective boundaries and the torus corresponding to periodic boundaries. The solution

of the Hadamard walk (Sec. 8.2) yielded a number of differences with respect to its one-dimensional

counterpart: While the one-dimensional Hadamard walk always lead to a flat distribution in position (i.e.

there are no edge states), the two-dimensional one can feature position inhomogeneity in the asymptotics.

We also showed that these inhomogeneous solutions (common eigenstates) in fact are sensitive to the

orientation of the graph. While in certain cases a unitary (closed) Hadamard walk on the M × N and

N ×M graphs yields a simply rotated position distribution, percolation — which is a symmetric noise
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— can break this rotational symmetry.

The solution of the Grover walk (Sec. 8.3) resulted in a whole family of common eigenstates with finite

support. These states are responsible for the appearance of trapping (localization) in the unitary (closed

system) case, and surprisingly we found them to appear in the percolation case too. That is, the trapping

effect survives the strong decoherence induced by the dynamical percolation. As being fixed points of

the dynamics, these states form a decoherence free subspace, moreover due to their finite support they

are practically insensitive to boundaries or to the size of the graphs: they might be used for information

storage. We also commented on the implications of such pure eigenstates on the definition of trapping

(localization): Trapping is usually defined in the literature as a situation where the probability to find

the particle at its original position is non-vanishing. However, this definition is rather impractical on

finite graphs. We suggest that the appearance of robust eigenstates with finite (exponentially decaying)

support might be a better indicator for trapping due to the insensitivity to the size of the underlying

graph. We note that both the Hadamard and the Grover walks are examples of RUO maps, where

the pure eigenstate ansatz are highly beneficial: the attractor space is completely determined by the

common eigenstates (p-attractors) and a single trivial non-p attractor, corresponding to the completely

mixed state.

To summarize our new results of Chapter 8, we employed our analytical methods to analyze two not-

able quantum walks on two-dimensional percolation graphs. First, we investigated the two-dimensional

Hadamard walk and gave its attractors in a closed analytical form. We have shown that in contrast

with its one-dimensional counterpart, it can exhibit position inhomogeneity. Moreover, we have shown

that the percolation model is sensitive to certain rotations, i.e. with respect to the unitary model some

symmetries are broken. We also studied the Grover walk, and obtained its attractor space in a closed

analytical form. We have shown that the trademark trapping effect of the Grover walk survives the

particularly strong decoherence of percolation. This is due to the family of common eigenstates with

finite support, spanning a decoherence free subspace. We also noted on the implication of such states on

the definition of trapping.

Calculating the entropy rate of quantum walk driven stochastic processes

Quantum mechanical systems can be disturbed in several ways. Up to now, we have studied a system

where the disorder was introduced to the system as an uncontrollable noise coming from the environment.

Here, we consider another approach where the system is disturbed by periodical selective measurements.

One can ask the natural question that how much quantumness a closed system can maintain when it

is frequently disturbed? We approach this problem by studying the information (disorder) a frequently
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measured system generates by using the classical quantity of entropy rate (Chapter 2). Approaching from

the classical information theory, the entropy rate gives the asymptotic per symbol information content

of a stochastic process. As one typical textbook example of the entropy rate is the classical walk, one

might find it interesting to address the problem of the entropy rate of quantum walks.

As the classical entropy rate has a sound operational (and physical) meaning, we first studied the

problem in terms of classical information theory via embedding both the classical and quantum walks

in a black box (Sec. 9.1). We defined a stochastic process corresponding to the periodic von Neumann

position measurement of a discrete time quantum walk (Sec. 9.3). Employing the definition of the

entropy rate we have successfully given an exact method to calculate the entropy rate of this system. In

contrast with the classical random walk, which is a Markov chain, the studied discrete time quantum

walk cannot be considered as a classical Markov chain in terms of position measurement outcomes, albeit

the quantum walk itself is a quantum Markov chain.

In fact, we have shown that the internal coin states keeping coherences after every position meas-

urement serve as a memory. However, the unitary quantum Markov chain nature of the system can be

employed: the actual coin state and, more importantly, the complete quantum state can be deduced

from the mere position measurement data. This allowed us to calculate the entropy rate of the model

as the entropy rate of a classical Markov chain extended with the coin states (Sec. 9.4). Moreover, we

also found that the entropy rate does not depend on the initial state, and the system in the asymptotic

limit always forgets its initial state. As the number of coin states can be infinite in the asymptotic limit,

we have also given an approximation (Sec. 9.5) to calculate the upper and lower bounds of the entropy

rate using finite (truncated) basis (matrices). The given method allowed us to calculate the entropy

rate of frequently measured discrete time quantum walks and compare it with the frequently measured

classical walk. We found (Sec. 9.5) that due to the implicit memory represented by the coin degree of

freedom the entropy rates of the frequently measured one-dimensional Hadamard walks are lower than

the corresponding classical walk.

Summarizing Sections 9.1 - 9.5, we have defined a stochastic process corresponding to periodically

measured quantum and classical walks. We have given an elaborate method for calculating the entropy

rate of quantum walks. We have shown that the quantum walk does not behave as a classical Markov

chain on positions, however, it can be viewed as a classical Markov chain on the position-coin basis. We

have also given a method to calculate the lower and the upper bound of the entropy rate using finite

(truncated) basis. We concluded that for frequent measurements due to the memory effect of the coin the

entropy rate of the quantum model (one-dimensional Hadamard walk) is usually lower then its classical

counterpart. We note here that the methods we have given are rather general and should be adaptable

for higher dimensional quantum walks or other discrete time quantum Markov chains as well.
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Determining the scaling of the entropy rate and comparison with other

approaches

The entropy rate of the periodically measured quantum and classical walks can indeed be calculated

and compared. However, the calculation can become rather involving as the frequency of the periodic

measurements becomes lower. In fact, in the worst case the problem becomes exponential (Sec. 9.5) with

respect to the dimension of the corresponding Markov chains (matrices).

To overcome this problem we have proposed a protocol (Sec. 9.6) which gives an easy to calculate

and measure upper bound to the entropy rate. If one does consider the quantum mechanical system as

a classical Markov chain, i.e. strictly encodes it with a position transition matrix, she will necessarily

face an encoding which is suboptimal, resulting in a higher entropy rate (upper bound). The functional

dependence between the correct representation and the position only representation and the corresponding

entropy rate inequality is given by the theory of hidden Markov models. We have shown that the scaling

of this upper bound rate can be approximated with the help of the weak limit theorem. We have also

shown that in tandem with the exact calculation approach a lower bound scaling can be given. We

found that in both cases the scaling of the entropy rate for rare measurement is log2w, where w is the

time between two subsequent measurements. In comparison, this value for the classical walk is 1
2 log2w.

The pre-factor difference is due to the ballistic and diffusive spreading of the two models. We drew the

conclusion that in the rarely measured limit, the entropy rate is dominated by the spreading behavior

of the models, and the quantum version surpasses its classical counterpart. We also considered finite

systems (Sec. 9.6), i.e. cycle graphs. On these graphs, the classical walk results in complete mixing,

while the quantum case shows a non-monotonous behavior due to the unitarity evolution: collapses and

revivals might occur.

We have also investigated the “most quantum" case (Sec. 9.7), which corresponds to the scenario when

every measurement is performed on a new, undisturbed system. Since there is no correlation between the

subsequent outcomes, the entropy rate is simply the entropy of the position distribution of the systems

in the infinite limit. On infinite systems this is infinity, and on finite systems due to the collapse-revival

behavior of finite unitary quantum systems, there is no convergence in the entropy rate. Thus, the “most

quantum" case cannot be studied in terms of the entropy rate.

We calculated the so-called quantum entropy rate (Sec. 9.8) as well. To this end we had to modify

the system to have a non-selective measurement. We have shown that the von Neumann entropy in the

definition of the quantum entropy rate grows logarithmically with the number of iterations, and thus the

entropy rate itself is zero in the asymptotic limit.

To summarize Sections 9.6 - 9.8, we have studied the behavior of the entropy rate of frequently
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measured quantum walks using analytical tools. We have given an easy to calculate and measure upper

bound approximation for the entropy rate, which is based on the theory of hidden Markov models. We

showed that the scaling of the entropy rate with respect to the number of steps between subsequent

measurement can be calculated using a weak limit approach. We drew the conclusion that in the limit

of rare measurements the spreading of the walk model dominates the entropy rate. Should someone

distinguish between the classical and quantum models based on the entropy rates of their periodic position

measurements for frequent measurements one should use the exact method giving back the delicate

differences, whereas in the rare measurement limit one could safely rely on the upper bound approach.

We also investigated the “most quantum" approach, which is a popular approach to characterize some

properties of quantum walks. However, here it did not yield any results due to lack of convergence.

We finally gave the quantum entropy rate of the system and determined that it is exactly zero in all

cases. The fact that the studied quantum models have an exact entropy rate in most of the cases also

provides that its outputs can be simulated using well designed classical walks. In this sense the quantum

mechanical properties of the system are hidden. On the other hand a number of non-trivial effects we

found: memory-like behavior, non-monotonous entropy rate, collapses and revivals reveals the quantum

nature of the walk.

Outlook

The methods given for percolation quantum walks gave us a very strong toolset for studying and

understanding these systems. The growing interest in this field, and the fruitful experiments further

motivate our studies in this direction. The next step could be to study the asymptotics of some other

graph structures or multiparticle walks. One could also possibly search for the application of the given

methods and results in quantum information theory. Another direction is to study the percolation of other

quantum walk models. Our preliminary results on the continuous time quantum walk model suggests that

there are non-trivial solutions as well, albeit the model is naturally more restricted due to the absence of

the coin state.

The asymptotic theory of random unitary operations clearly benefit from the pure eigenstate ansatz.

However, in more general cases the theory can be extended to non-trace-preserving maps, i.e. sources

and drains can be introduced and steady states could be studied with the theory. It would be rather

interesting to find a way to extend the pure state ansatz to this generalized model. Another interesting

aspect is the question of the convergence rates. In some models the rate of convergence might carry an

important physical meaning, e.g. traces of phase transitions. Consequently, developing any method for

this purpose might be prosperous.
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We intended the study of the entropy rate of discrete time quantum walks as a first step towards a

deeper understanding of the concept of entropy rate itself and also the classical and quantum borderline

in terms of information theory. A straightforward extension would be to calculate the entropy rate of

more general quantum systems and draw the conclusion on how quantum mechanics itself is reflected

in this quantity. Another approach would be to find definitions and measurement processes which gives

some way to estimate the quantumness of a given system in terms of the classical or quantum entropy

rate. A promising candidate would be for example the quantum dynamical entropy. We hope that further

studies in this field will lead to some ways to gather a deeper understanding on the mysterious border

between the classical and quantum world.
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1. I have developed a general method for solving the asymptotics of discrete time quantum walks

on percolation graphs. This general method is based on the attractor-space formalism of the

asymptotic method of random unitary operations, which I separated into two parts by making

a difference between the coin toss and position step. I have shown that the separation process

allows for solving the problem for whole families of graphs and coins. I have also shown that

the superoperator describing the dynamics of the percolation quantum walk can be constructed

polynomially on regular graphs with respect to the number of sites [I].

2. I presented a method for determining the asymptotic attractors of random unitary operations.

The core of this method is to find the common eigenstates of the dynamics, which can be used

to form attractors with a direct physical meaning. I have shown that these common eigenstates

span a decoherence-free subspace. I have also shown that in some cases the complete attractor

space can be determined via common eigenstates and the trivial attractor (corresponding to the

completely mixed state). I determined the formula of the asymptotic time evolution in this case,

which is given as an incoherent mixture of the unitary dynamics on the decoherence-free subspace

spanned by common eigenstates and the completely mixed state on its orthogonal complement. I

have also illustrated the method on discrete time quantum walks on dynamical percolation graphs

and pointed out the important differences with respect to the general method [II].

3. I have explicitly solved the asymptotic dynamics of one-dimensional percolation quantum walks

by employing the methods I developed. I have given the attractor space in a closed form for the

percolation cycle and linear graph for the complete SU(2) problem. I have shown that there are

non-trivial asymptotics: stationary states with quantum coherences and limit cycles can appear.

I have analyzed the physical form of the solutions and discovered that on the linear graph the

solutions are edge states for most of the coin operators [III].

4. I have explicitly solved the asymptotic dynamics of the two-dimensional Hadamard and Grover

walks on the percolation torus and carpet. I have shown that in contrast to its one-dimensional

counterpart, the Hadamard walk exhibits asymptotic position inhomogeneity. I have also dis-

covered that the percolation model in certain cases is sensitive to rotation, in contrast with the

corresponding undisturbed (unitary) quantum walk. I have found that the common eigenstates of

the Grover walk have finite support, thus the walk keeps its trapping property in the percolation

case [II].
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5. I have defined a stochastic process based on the periodically measured quantum and classical walks.

I have given a general method for calculating the classical entropy rate of these stochastic processes.

I have shown that the frequently measured quantum walk behaves as a classical Markov chain in

the position-coin state basis, and the entropy rate of this Markov chain is equal to the entropy rate

of the previously defined stochastic process. I have also given a method for calculating the lower

and upper bounds of this entropy rate. I have found that in the regime of frequent measurements,

the entropy rate of the quantum-walk-based model is usually lower, due to the memory effect of

the coin state of the particle [IV].

6. I have developed an approximation protocol to give an upper bound to the exact entropy rate

of the periodically measured quantum walks. I have estimated the scaling of the entropy rate of

the one-dimensional Hadamard walk with respect to the time (number of discrete steps) between

measurements using the so-called weak limit theorem. I have found that for rare measurements

the entropy rate is dominated by the ballistic spreading of the quantum walk, thus the entropy

rate is higher than in the classical case. I have also studied finite systems and discovered that

collapses and revivals can occur in the quantum walk based system. I have also calculated the

“most quantum case" and the quantum entropy rate of the model to give a comparison. I found

that both of these models are inconclusive for periodically measured walks. On the other hand,

the classical-entropy-rate approach I proposed is a suitable tool to capture some of the quantum

features of the system [IV].



Összefoglalás

(Summary in Hungarian)

Bevezetés

A kvantumos bolyongások [29–31, 34–37] a klasszikus véletlen bolyongások kvantummechanikai ki-

terjesztései. Ahogy a véletlen bolyongás a statisztikus fizika és a számítástudomány elfogadott eszköze,

hasonlóan a kvantumos bolyongás is felhasználhatónak bizonyult a kvantumfizikában és a kvantuminfor-

máció elméletben [45, 46]. A kvantumos bolyongások megfelelő modellt jelentenek számos fizikai jelenség

leírására, többek között a kvantumos transzport [39–41, 44], szórás [32, 170, 171] és a szilárdtestekben

tapasztalható topologikus effektusok [57–60] tanulmányozására. A kvantuminformáció-elmélet szempont-

jából a kvantumos bolyongások univerzális számítási primitívet jelentenek [54, 55]. Egyszerűségük és a

potenciális alkalmazások ugrásszerűen gyarapodó száma hamar felkeltette a kísérleti fizikusok figyelmét

is. Kvantumos bolyongásokat immáron a fizikai rendszerek széles családjában sikerült demonstrálni, a

csapdázott ionokon [112, 113] és atomokon [110, 111] keresztül a fotonikus rendszerekig [115–124].

Jelen disszertáció gerincét a diszkrét idejű kvantumos bolyongás adja (1.1. alfejezet), mely a klasszikus

véletlen bolyongás egy nemtriviális kiterjesztése. Itt a nemtrivialitást az úgynevezett érmetér bevezetése

okozza, mely egy belső szabadsági fokhoz tartozó Hilbert tér, így e definíció a klasszikus véletlen bolyon-

gások skalárságát bontja fel. A bolyongások időfejlődését unitér dinamika írja le, emiatt alapvetően zárt

rendszernek tekinthetőek. Valójában a természetben lezajló folyamatok az esetek túlnyomó többségében

valamilyen zaj hatásának vannak kitéve, mely megzavarhatja a zárt kvantumrendszerek unitér időfejlő-

dését, nyíltrendszer dinamikát eredményezve. A jelen disszertációban tárgyalt kvantumos bolyongások

mindegyikének dinamikáját valamilyen módon megzavarjuk.

Az általunk vizsgált első modellben a bolyongás „lépés" műveletét zavartuk meg egy klasszikus vélet-

lenszerűség okozta zajjal (Lásd 4. fejezet). Ezt a zajt a bolyongás gráfjának dinamikus perkolációjával

írtuk le. E probléma tanulmányozásának érdekében a véletlen unitér műveletek (Lásd 3. fejezet) álta-

lános aszimptotikus elméletének eszközeit használtuk fel, miközben azokat a cél és a jobb fizikai rálátás

érdekében továbbfejlesztettük.

A kvantumos bolyongások unitaritásának megtörésére a kvantummechanika egy természetes módot is

kínál: a mérés szükségszerűen megzavarja az unitér dinamikát. Gyakori (periodikus) szelektív mérések egy

kvantumállapotok között zajló sztochasztikus folyamatot eredményeznek. Egy ilyen folyamat információ

produkcióját vizsgáljuk meg a klasszikus információelméletben található entrópia-ráta mennyiségének

segítségével. Mivel a klasszikus véletlen bolyongások jelentik az entrópia-ráta iskolapéldáját, reményeink
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szerint a kvantumos bolyongások entrópia-rátájának meghatározása és a két modell összehasonlítása

rávilágíthat az egyszerű klasszikus és kvantumrendszerek közötti alapvető különbségekre, ezzel elárulva

valamit a rejtélyes klasszikus-kvantum határátmenetről.

Általános módszer a perkolációs kvantumos bolyongások aszimptotiká-

jának meghatározására

Az első általunk vizsgált rendezetlen rendszer a perkolációs gráfon történő diszkrét idejű bolyongás

volt. Ebben a modellben a bolyongás gráfjának minden éléhez egy véges valószínűséget rendelünk, mely

azt írja le hogy az adott él milyen valószínűséggel válik „hibássá" egységnyi időlépés alatt. A „hibás"

éleken a bolyongás nem tud átlépni az adott időpillanatban. A perkolációs (zajos) gráfokon való diszkrét

idejű bolyongás leírása nem triviális feladat, mivel a perkoláció miatt a gráf regularitása is sérül. E

probléma feloldására mi egy irodalomban ismert módszert választottunk: a bolyongás unitaritását egy

visszaverődés (reflexió) bevezetésével megtartjuk. Mivel a bolyongás egy hibás élen nem tud átmenni,

ezért helyette a belső érmeállapotában történik egy reflexió (Lásd 5.1. alfejezet). Egy ilyen rendszer

teljes, sztochasztikus időfejlődését egy véletlen unitér leképezés (RUO) írja le, mely konstrukciója miatt

egy trace-megőrző kvantumművelet (kvantumcsatorna).

Az ilyen RUO leképezések aszimptotikájának meghatározását leíró elméletetet adaptáltuk a perko-

lációs kvantumos bolyongás problémájára (Lásd 5.3. alfejezet.). Ebben az elméletben a legfontosabb,

nélkülözhetetlen lépés az úgynevezett attraktortér megkonstruálása, mely a RUO leképezés egy invariáns

altere. Megmutattuk, hogy a diszkrét idejű kvantumos bolyongások operátorszorzattal adott dinamikája

miatt az érméhez tartozó és a léptető operátorhoz tartozó részek (utóbbi a gráf topológiájának is meg-

felel) szeparálhatóak és külön oldhatóak meg. Az érméhez tartozó egyenleteket „érme feltételeknek" a

léptetőoperátorhoz tartozó részeket „léptető feltételeknek" neveztük. A szeparációs technika segítségével

ezek a részek külön paraméterezhetőek, így lehetőséget adva a minél általánosabb problémák megoldá-

sára. Megmutattuk, hogy transzlációinvariáns reguláris gráfok esetére a léptető feltételek számottevően

leegyszerűsödnek, lehetővé téve azt, hogy a gráf mérete paraméterként szerepeljen a megoldásban (5.4.

alfejezet). Itt fontos megjegyeznünk, hogy az attraktor-tér független a RUO leképezés konstrukciójakor

felhasznált valószínűségektől egészen addig, míg a felhasznált unitér operátorok halmaza nem változik.

Emiatt az attraktorokban (aszimptotikában) fázisátalakulások vagy a rövid távú dinamika jelei nem

figyelhetőek meg.

Alapvetően a perkolációs gráfok problémájának mérete exponenciálisan növekvő a következő érte-

lemben: Az időfejlődést megadó RUO leképezés unitér műveletek súlyozott összeadásának eredménye.

Ezen unitérek száma a lehetséges gráf-konfigurációk számával megy, mely exponenciális az élek számával.
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Megmutattuk, hogy mivel a kvantumos bolyongások csak legközelebbi szomszéd lépéseket (interakciókat)

tartalmaznak, ezért az unitérek ritka mátrixok és ebből kifolyólag a RUO leképezéseket leíró szuperope-

rátorok polinomiális idő alatt megkonstruálhatóak (lásd 5.2. alfejezet). Itt megjegyezzük, hogy munkánk

során rendszeresen használtunk numerikus eszközöket analitikus eredményeink ellenőrzésére és ábrák raj-

zolására, így a polinomiália konstrukció eredményét gyakorlatban is felhasználtuk és igen hasznosnak

találtuk.

Összefoglalva, az 5. fejezetben bemutatott új eredményeink a következők. Sikerrel alkalmaztuk a

RUO leképezések aszimptotikus elméletetét perkolációs kvantumos bolyongásokra. Megmutattuk, hogy

érme-léptetés szeparáció hajtható végre, mely segítségével a probléma részekre osztható és részenként

oldható meg. E megközelítés segítségével általánosabb problémák oldhatóak meg. Megmutattuk, hogy a

„léptető feltételek" (melyek a léptető operátornak felelnek meg) számottevően leegyszerűsödnek transz-

lációinvariáns reguláris gráfokon, így hozzájárulva ahhoz hogy gráfok teljes családját tanulmányozzuk

egyszerre. Továbbá megmutattuk, hogy a RUO időfejlődést leíró szuperoperátorok a gráf méretével po-

linomiálisan skálázódó erőforrást felhasználva megkonstruálhatóak reguláris gráfokon. Ez egy különösen

hasznos eredmény, hiszen a konfigurációk száma exponenciálisan nő a gráf méretével, így a „nyers erő"

(brute force) numerikus módszerek csupán igen kis rendszerek tanulmányozását tennék lehetővé.

Tiszta állapot ansatz a véletlen unitér műveletekben

A véletlen unitér műveletek (RUO) aszimptotikájának meghatározása az úgynevezett attraktor-tér

megkonstruálásán keresztül történik. Eme invariáns alteret a dinamika fixpontjai feszítik ki, melyeket

attraktoroknak nevezünk. Ezeket az attraktorokat tekinthetjük a RUO leképezés (mint szuperoperátor)

egységnyi abszolútértékű sajátértékeihez tartozó sajátoperátorainak (sajátvektorainak). Fontos megje-

gyeznünk, hogy ezen felül az attraktorok fizikai alakjára, jelentésére nincsenek megkötések. Valójában

a teljes attraktortér egy lineáris tér, melyen belül található a tényleges aszimptotikus állapotok (melyek

sűrűségoperátorok) konvex tere. Tömören megfogalmazva, a RUO leképezések (3.2. alfejezet) aszimpto-

tikáját megadó általános elmélet kevés támpontot ad, ha valaki az attraktorok közvetlen fizikai jelentésére

vagy értelmezésére kíváncsi. Megjegyezzük ezen felül, hogy mivel az attraktorok lineáris operátorok a

Hilbert téren ezért az ő méretük négyzetesen növekszik a Hilbert tér méretével, emiatt analízisuk erőfor-

rásigényesebb szemben egy pusztán tiszta állapotokra szorítkozó analízissel.

Ebben a részben az attraktorok fizikai alakjának kérdését tűztük ki célul, miközben az analízist sikerült

lényegesen egyszerűbbé tennünk: bevezettük a „tiszta állapot ansatz"-ot (6.1. alfejezet). A RUO leképe-

zés megkonstruálásakor felhasznált unitér operátoroknak közös sajátállapotaik lehetnek: tiszta állapotok,

melyek minden RUO-t alkotó unitérnek sajátállapotai ugyanazzal a sajátértékkel. Megmutattuk, hogy
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ezek az állapotok a RUO-val leírt időfejlődés fixpontjai, emiatt belőlük egy rangú attraktorok építhetőek.

Ezeket az attraktorokat p-attraktoroknak neveztük el. Ezen felül a közös sajátállapotok egy dekoherencia-

mentes alteret feszítenek ki, mely altér az attraktor-téren belül található, és valódi fizikai jelentéssel bír.

Meg kell jegyeznünk, hogy nem minden attraktor konstruálható meg a közös sajátállapotokból: a teljesen

kevert állapot (mely a RUO leképezések unitalitása miatt megjelenő triviális attraktor) az egyik ilyen

attraktor. Bizonyos releváns esetekben viszont az attraktor-tér teljesen meghatározható p-attraktorok és

az előbb említett teljesen kevert állapot segítségével. Ebben az esetben az aszimptotikus időfejlődés egy

inkoherens keveréke a p-attraktorok alterén történő unitér időfejlődésnek (mely egy dekoherencia mentes

altér) és az eme tér ortogonális alterére vetített teljesen kevert állapotnak. Megjegyezzük, hogy ez a

meglepően egyszerűen leírható aszimptotika később még elő fog kerülni némely perkolációs bolyongás

során.

Összefoglalva, egy új megközelítést adtunk meg mely segítségével a RUO leképezések aszimptotikus

attraktor tere meghatározható (6. fejezet). E megközelítés alapja a RUO leképezést felépítő unitér ope-

rátorok közös sajátállapotainak megkonstruálása. Ezen sajátállapotok megkeresése számottevően egysze-

rűbb, mint a RUO leképezés sajátoperátorainak megkeresése. Az általunk megadott tiszta állapot ansatz

lehetővé teszi, hogy az attraktor-tér bizonyos részeihez közvetlen fizikai jelentést rendeljünk. Példának

okáért megemlítjük, hogy a közös sajátállapotok dekoherenciamentes alteret feszítenek ki. Megmutattuk,

hogy nem minden attraktor konstruálható meg tiszta sajátállapotok segítségével, a RUO-k unitalitása

miatt mindig megjelenő teljesen kevert állapot egy közülük. Továbbá azt is megmutattuk, hogy ha az

attraktor-tér tiszta állapotokból és a teljesen kevert állapotból megkonstruálható, akkor az aszimptotikus

dinamika igen egyszerűen megadható, az pusztán a közös sajátállapotok terén vett unitér időfejlődésből

és az e térre ortogonális altérre vetített teljesen kevert állapot inkoherens keverékéből áll össze.

Egydimenziós perkolációs bolyongások: explicit megoldások és élállapo-

tok

Az egydimenziós perkolációs gráfokon vett kvantumos bolyongások problémájának megoldása jelenti

az első lépést a nyílt rendszerek egy egész családjához. Első ránézésre a probléma egyszerűnek tűnhet: az

egydimenziós kvantumos bolyongások az irodalomban igen részletesen leírt és megértett rendszerek, és az

egydimenziós gráfok perkolációjának problémája klasszikusan megoldottnak tekinthető. Ezzel szemben

e két alapvető modell kombinációja meglepően újszerű és érdekes módon nemtriviális: az ilyen rendsze-

rek tanulmányozása eddig főként numerikus vagy fenomenologikus eszközökkel történt, melyeket erősen

bekorlátoz a probléma exponenciális számítási igénye (4.2. alfejezet).

A 7. fejezetben a perkolációs bolyongásokra megadott általános módszerünket (5. fejezet) alkalmaztuk
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a tiszta állapot ansatz-zal (6. fejezet) karöltve, hogy segítségükkel explicit módon megoldjuk a legáltalá-

nosabb, SU(2) érmével hajtott kvantumos bolyongások problémáját perkolációs gyűrűn és vonalon. Ezek

az egyszerű egydimenziós gráfok a fizikában gyakran megjelenő visszaverő és periodikus határfeltételeket

testesítik meg. A problémát explicit módon, zárt alakban sikerült megoldanunk (7.1. alfejezet). A leg-

több esetben az attraktor teret p-attraktorok és a teljesen kevert állapothoz tartozó attraktor határozza

meg, habár speciális (degenerált) esetekben egy másik nem-p-attraktor is megjelenhet. Megmutattuk,

hogy az aszimptotika nagyban függhet az általunk választott érmeoperátortól: a teljesen kevert végálla-

pottól kezdve stacionárius, koherenciát részben megőrző állapotok, illetve periodikus és kvázi-periodikus

határciklusok is létrejöhetnek. Azt is megmutattuk, hogy a tényleges aszimptotikus dinamika csupán az

érmetéren figyelhető meg, a pozíció sűrűségoperátor mindig stacionárius. Ezek az eredményeink élesen

eltérnek a klasszikus bolyongásoknál mindig fennálló teljes keveredéstől.

Megvizsgáltuk továbbá az általunk talált közös sajátállapotok fizikai alakját. Ezek az állapotok a vonal

gráfokon a legtöbb esetben (a legtöbb érmeoperátor esetében) élállapotoknak felelnek meg (7.2 alfejezet),

azaz exponenciálisan lokalizáltak a rendszer határain. Ez a megfigyelés néhány érdekes fizikai jelenséget

is maga után von, példának okáért a bolyongást egy pozícióban teljesen uniform eloszlásnak megfelelő

tisztaállapotból indítva a végállapotot exponenciálisan lokalizáltnak találhatjuk a rendszer egyik szélén.

Újfent megjegyezzük, hogy az ilyen effektusok klasszikus bolyongásokon nem megfigyelhetőek.

Összefoglalva, a 7. fejezetben az eddig kidolgozott módszereinket alkalmaztuk, hogy megoldjuk az

egydimenziós perkolációs kvantumos bolyongások általános problémáját. Sikeresen megoldottuk a teljes

SU(2) problémát két alapvető egydimenziós gráfon, a gyűrűn és a vonalon, miközben a rendszer mére-

tét szabad paraméterként hagytuk. Megjegyezzük, hogy ezek az eredmények a perkolációs kvantumos

bolyongásokra kiszámolt első analitikus, zárt alakú eredmények közé tartoznak. Megmutattuk, hogy a

lehetséges aszimptotikus viselkedések eléggé sokszínűek lehetnek: a klasszikusan is elérhető teljes keve-

redéstől kezdve stacionárius, kvantum koherenciát megőrző állapotok és határciklusok is kialakulhatnak.

Továbbá megvizsgáltuk ezen aszimptotikus megoldások fizikai alakját és azt találtuk, hogy a vonal grá-

fon a legtöbb érmeoperátorra élállapotok (a rendszer szélein megjelenő exponenciális lokalizált tiszta

állapotok) jelennek meg.

Kétdimenziós perkoláció bolyongások: szimmetriasérülés és csapdázás

Az egydimenziós probléma teljes megoldását követően természetes továbblépés egy magasabb dimenzió

probléma megvizsgálása. Már a zárt (unitér) kétdimenziós kvantumos bolyongások (1.1.2. fejezet) is

sokkal érdekesebb jelenségeket mutathatnak az egydimenziós modellhez képest. Ilyen jelenségekre egy

kiváló példa a Grover csapdázás (lokalizáció). Hasonképpen a kétdimenziós perkolációs gráfok elmélete
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sokkal több kihívást és releváns problémát rejt.

Az egydimenziós esettel analóg módon a 8. fejezetben az általunk megadott általános módszert és

tiszta állapot ansatz-ot használtuk hogy a kétdimenziós bolyongások néhány érdekes esetét analitikusan

megoldjuk. A két legnépszerűbb kétdimenziós bolyongást választottuk: a Hadamard és a Grover bo-

lyongást. Az analízisben a bolyongás gráfjaként kétféle véges négyzetrácsot vettünk: a szőnyeg gráfot,

mely a visszaverő határfeltételeknek felel meg és a tóruszt mely a periodikus határfeltételeknek felel meg.

Mindegyik esetben a gráf méreteit szabad paraméterként meghagytuk. A Hadamard bolyongásra kapott

megoldás (Sec. 8.2) az egydimenziós megfelelőjéhez képest számos eltérést mutatott: Mialatt az egydi-

menziós Hadamard bolyongás mindig sík pozícióeloszlást erdeményez aszimptotikusan (tehát nincsenek

élállapotok), addig a kétdimenziós modell mutathat pozíció inhomogenitást. Azt is megmutattuk, hogy

ezek az inhomogén megoldások (tiszta sajátállapotok) érzékenyek a gráf orientációjára. Míg egyes esetke-

ben az unitér Hadamard bolyongás azM ×N és N ×M gráfokon pusztán egy elforgatott pozícióeloszlást

eredményez, a perkolációs változatban ez a fajta szimmetria sérül: az eloszlás teljesen megváltozik.

A Grover bolyongásra kapott megoldásban (Sec. 8.3) véges tartójú közös sajátállapotok egész sere-

gét találtuk. Ezek az állapotok felelnek a csapdázás (lokalizáció) megjelenésért az unitér (zártrendszer

dinamikát követő) esetben, de meglepő módon megjelennek a perkolációs esetben is. Ebből kifolyólag a

csapdázás jelensége túléli a dinamikus perkoláció jelentette erős dekoherenciát. Ezek az állapotok deko-

herenciamentes alteret feszítenek ki, és véges tartójuk miatt a gráf méretére vagy határfeltételeire sem

érzékenyek: a gyakorlatban információtárolásra is alkalmasak lehetnek. Egy ilyen nagy dekoherencia-

mentes altér megjelenése számunkra nem várt eredmény volt. A véges tartójú sajátállapotok a csapdázás

definíciójára vonatkozó következményeit is átgondoltuk: az irodalomban a csapdázást (lokalizációt) álta-

lában úgy definiálják, hogy a részecske megtalálási valószínűsége a kezdeti helyén a teljes időfejlődés alatt

nagyobb mint zérus. Ez a definíció viszont nem alkalmazható megfelelően véges gráfokon. Javaslatunk

szerint a robusztus, véges (exponenciálisan lecsengő tartójú) sajátállapotok megjelenése a csapdázás egy

jobb indikátora lehetne, mivel az a gráf méretére és határaira érzéketlen. Megjegyezzük, hogy mind

a Hadamard mind a Grover bolyongások olyan RUO leképezések ahol a tiszta állapot ansatz igen jó

eredménnyel alkalmazható: a teljes attraktor-tér meghatározható a közös sajátállapotok segítségével de-

finiált attraktorokkal (p-attraktorok) és az egyetlen triviális nem-p-attraktorral mely a teljesen kevert

állapotnak felel meg.

A 8. fejezet eredményeit összefoglalva: Alkalmaztuk az általunk javasolt analitikus módszereket,

hogy két népszerű kétdimenziós kvantumos bolyongást vizsgáljunk perkolációs gráfokon. Először a kétdi-

menziós Hadamard bolyongást analizáltuk és adtuk neg zárt alakban attraktorait. Megmutattuk, hogy

szemben az egydimenziós Hadamard bolyongással itt inhomogenitás is felléphet. Továbbá megmutattuk,

hogy a perkolációs modell érzékeny bizonyos elforgatásokra, az unitér modell bizonyos szimmetriái sérül-

nek. Megvizsgáltuk a Grover bolyongást is, melynek szintén meghatároztuk az attraktorait zárt alakban.
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Megmutattuk, hogy a Grover bolyongásra jellemző csapdázási jelenség megtalálható a perkolációs mo-

dellben is. E jelenség túlélése a véges tartójú közös sajátállapotok megjelenésének köszönhető, melyek egy

dekoherenciamentes alteret is kifeszítenek. Ezen állapotok megjelenése miatt a csapdázás definíciójának

kiterjesztését javasoltuk.

Az entrópia-ráta kiszámítása kvantumos bolyongás alapú stochasztikus

folyamatokban

A kvantummechanikai rendszereket többféle módon is megzavarhatjuk. Eddig egy olyan rendszert tár-

gyaltunk, ahol a rendezetlenséget a környezetből érkező zaj okozta. Itt egy másik megközelítést fogunk

megvizsgálni, melyben a rendszert periodikus szelektív mérésekkel zavarjuk meg. A következő kérdést

tehetjük fel: mennyi kvantumosságot mutat egy olyan alapvetően zárt rendszer melyet rendszeres mé-

réssel zavarunk meg? Ezt a problémát a rendszerből kinyerhető információ (rendezetlenség) tükrében

vizsgáljuk meg a klasszikus információelméletből ismert entrópia-ráta eszközével (2. fejezet). A klasszi-

kus információelmélet szemszögéből nézve az entrópia-ráta egy stochasztikus folyamat aszimptotikus

szimbólumonkénti információtartalmát írja le. Mivel az entrópia-ráta egyik iskolapéldája a klasszikus

véletlen bolyongás, kézenfekvőnek tűnik hogy a kvantumos bolyongások entrópia-rátájának problémáját

megvizsgáljuk.

Mivel a klasszikus entrópia-ráta rendelkezik egy megfelelő operacionális és fizikai jelentéssel, a prob-

lémát a klasszikus információelmélet határain belül vizsgáltuk meg. Ehhez a klasszikus vagy kvantumos

bolyongásokat egy fekete dobozba rejtettük (9.1. alfejezet), és ehhez rendeltünk egy stochasztikus folya-

matot. Ezt a diszkrét idejű kvantumos bolyongások esetén a periodikus pozíció von Neumann méréssel

definiáltuk (9.3. alfejezet). Az entrópia-ráta alapdefinícióját felhasználva sikeresen megadtunk egy mód-

szert a rendszer entrópia-rátájának kiszámítására. Szemben a klasszikus bolyongásokkal, melyek Markov

láncok, a vizsgált diszkrét idejű bolyongás nem tekinthető klasszikus Markov folyamatnak a pozíció mérési

eredményeken, habár maga a bolyongás egy kvantumos Markov lánc.

Megmutattuk, hogy a belső érmeállapot a pozíciómérések után is megőriz némi koherenciát, így egy-

fajta memóriaként működik. Továbbá azt is megmutattuk, hogy a rendszer kvantumos Markov lánc

tulajdonsága kihasználható: az aktuális érmeállapot, sőt, a rendszer teljes kvantumállapota rekonstru-

álható a pozíciómérések kimeneteleiből. Ez lehetővé tette számunkra, hogy a modell entrópia-rátáját

egy érmeállapotokra is kiterjesztett klasszikus Markov lánc entrópia-rátájaként számítsuk ki (9.4. alfeje-

zet). Továbbá azt is megfigyeltük, hogy a rendszer entrópia-rátája nem függ a kezdeti állapottól, tehát

a rendszer aszimptotikusan mindig elfelejti kezdeti állapotait. Mivel az érmeállapotok száma végtelen is

lehet, ezért egy az érmeállapotok vágásán alapuló közelítő módszert is megadtunk (9.5. alfejezet), mely
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segítségével a rendszer entrópia-rátájának egy alsó és felső határa is kiszámítható. A megadott mód-

szerek lehetővé tették, hogy meghatározzuk a sűrűn mért kvantumos bolyongások entrópia-rátáját és

összevessük azt a sűrűn mért klasszikus bolyongásokéval. Azt találtuk (9.5. fejezet), hogy az érmeállapot

mint implicit memória megjelenése miatt a sűrűn (gyakran) mért egydimenziós Hadamard bolyongások

entrópia-rátája tipikusan kisebb mint a megfelelő klasszikus bolyongásoké.

Összefoglalva a 9.1 - 9.5. alfejezeteket, először egy stochasztikus folyamatot rendeltünk a periodiku-

san mért kvantumos (és klasszikus) bolyongásokhoz. Egy részletes módszert adtunk meg a klasszikus

bolyongások entrópia-rátájának kiszámítására. Megmutattuk, hogy a kvantumos bolyongások nem te-

kinthetőek a pozíció mérési eredmények közötti klasszikus Markov láncnak, viszont pozíció-érme bázison

már annak tekinthetőek. Módszert adtunk meg az entrópia-ráta alsó és felső határainak kiszámítására a

bázisállapotok vágásával. Azt találtuk, hogy a sűrű mérések esetében az érme memóriaszerű viselkedése

a kvantumos modellben (egydimenziós Hadamard bolyongás) tipikusan alacsonyabb entrópia-rátát ered-

ményez mint a megfelelő klasszikus bolyongásé. Fontosnak tartjuk kiemeleni, hogy az általunk megadott

módszerek általánosak és könnyen kiterjeszthetőek magasabb dimenziós bolyongásokra vagy más diszkrét

idejű kvantumos Markov láncokra is.

Az entrópia-ráta skálázódásának meghatározása és összehasonlítás más

megközelítésekkel

A periodikusan mért kvantumos és klasszikus bolyongások entrópia-rátája kiszámítható és összeha-

sonlítható. Azonban ezek a számítások rendkívüli módon komplikálhattá válhatnak, ahogy a mérések

közötti időt növeljük. Valójában a legrosszabb esetben a probléma exponenciálissá válik (9.5. alfejezet)

a megfelelő Markov láncok dimenzióját (mátrixok méretet) tekintve.

Ezt a problémát elkerülendő egy protokollt adtunk meg (9.6. alfejezet) mely egy könnyen kiszámítható

és mérhető felső határt ad meg az entrópia-rátára: Ha valaki a kvantumos bolyongást szigorúan klasszikus

Markov láncként kezeli, azaz a pozíciók közötti stochasztikus (átmeneti) mátrixként írja le a mérési kime-

neteket, szükségszerűen egy szuboptimális kódolást fog találni, mely magasabb entrópia-rátával társul. A

korrekt reprezentáció és a pozícióra szorítkozó reprezentáció közötti függvénykapcsolatot és a kapcsolódó

entrópia-ráta egyenlőtlenséget a rejtett Markov modellek elmélete szolgáltatja. Megmutattuk, hogy ezen

felső határt jelentő entrópia-ráta közelíthető az úgynevezett weak limit elméletek segítségével. Azt is

megmutattuk, hogy az egzakt kiszámítási mód segítségével akár egy alsó határhoz tartózó skálázódás is

kiszámítható. Minden kvantumos esetben az entrópia-ráta log2w-vel skálázódik, ahol w két egymást kö-

vető mérés között eltelt idő (a periodikus mérések periódusideje). Összehasonlításképpen, ez a mennyiség

klasszikus bolyongások esetén 1
2 log2w. A szorzófaktorban megjelenő különbség a ballisztikus és diffúzív
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terjedések következménye. Azt a konklúziót vontuk le, hogy a ritkán mért határesetben az entrópia-rátát

a rendszerek terjedése uralja, azaz itt a kvantumos változat túlszárnyalja a klasszikus megfelelőjét. Véges

rendszereket (gyűrű gráfokat) is megvizsgáltunk (9.6. alfeljezet) a módszer segítségével. Azt találtuk,

hogy ezeken a gráfokon a klasszikus bolyongások teljes keveredést mutatnak, ezzel szemben a kvantumos

rendszer nem-monoton viselkedést mutat az unitaritás miatt: kollapszusok és feléledések (collapses and

revivals) történhetnek.

Megvizsgáltuk a „teljesen kvantumos" esetet is (9.7 alfejezet), melyben minden egyes mérést egy új,

addig zavartalanul fejlődő rendszeren végzünk el. Miután ebben az esetben nincs korreláció az egymást

követő mérések között, az entrópia-rátát egyszerűen a végtelen határesetig elfejlesztett rendszer pozí-

ció eloszlásának entrópiája adja meg. Ez azonban végtelen kvantumrendszereken végtelen, véges kvan-

tumrendszereken viszont nem konvergens az előbb említett kollapszus-feléledés viselkedés miatt. Azt a

konklúziót vontuk le, hogy a „teljesen kvantumos" eset nem vizsgálható az entrópia-ráta segítségével.

Az úgynevezett kvantumos entrópia-rátát (9.8. fejezet) is kiszámítottuk. Ehhez szükség volt a mé-

rés definíciójának szelektívről nem szelektívre történő változtatására. Megmutattuk, hogy a kvantumos

entrópia-ráta definíciójában található Neumann entrópia logaritmikusan nő az iterációkkal, ezért maga a

kvantumos entrópia-ráta (mely lineáris növekedést feltételez) zérus lesz.

A 9.6 - 9.8. alfejezeteket összefoglalandó, analitikus eszközök segítségével vizsgáltuk meg a periodiku-

san mért kvantumos bolyongásokat. A rejtett Markov modellek elméletének segítségével egy egyszerűen

kiszámítható és mérhető protokollt adtunk meg, mely segítségével az entrópia-rátára egy felső határ ad-

ható meg. Megmutattuk, hogy az entrópia-ráta skálázódása a mérések között eltelt idő függvényében

megadható a "weak limit" elméletek segítségével. Arra a következtetésre jutottunk, hogy a ritka mérések

határesetében az entrópia-rátát a bolyongások terjedése uralja. Az entrópia-ráta tükrében ezek alapján a

kvantumos és klasszikus rendszerek megkülönböztethetőek: a sűrű mérések esetében az egzakt módszer

segítségével megtalálható a két rendszer közötti finom különbség, míg a ritka mérések határában a sokkal

könnyebben kiszámítható felső határt adó protokoll biztonsággal vezet eredményre. Szintén megvizsgál-

tuk a „teljesen kvantumos" esetet is, mely a kvantumos bolyongások vizsgálatánál igen gyakran előforduló

megközelítés. Ebben az esetben az entrópia-rátát nem találtuk konvergensnek. Végezetül a kvantumos

entrópia-rátát is megvizsgáltuk és azt találtuk, hogy az minden esetben zérus. Az, hogy az esetek túl-

nyomó részében a megvizsgált kvantumos modelleknek létezik klasszikus entrópia-rátája, azt is magával

vonja, hogy egy megfelelően tervezett klasszikus bolyongással e rendszerek kimenetei szimulálhatóak.

Ilyen értelemben a kvantummechnaikai tulajdonságok végig rejtve maradnak a klasszikus információel-

mélet szemszögéből. Másrészről a feltárt nem-triviális jelenségek, mint az érme memóriaszerű viselkedése,

a nem-monoton entrópia-ráta és a kollapszusok-feléledések felfedik a bolyongás kvantumos természetét.
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Kitekintés

A perkolációs kvantums bolyongásokhoz általunk megadott módszerek jól megalapozott eszköztárat

biztosítanak e rendszerek tanulmányozásához és megértéséhez. A területet övező növekvő figyelem és

a gyümölcsöző kísérletek tovább motiválják ezirányú kutatásainkat. A következő kézenfekvő lépés más

gráfok vagy többrészecskés bolyongások vizsgálata lehet. Lehetségesnek tartjuk, hogy a megadott mód-

szerek és eredmények a kvantuminformáció területén is közvetlenül felhasználhatóak. Egy másik irányt

jelenthet a perkoláció jelenségének vizsgálata másféle kvantumos bolyongás definíciókat használva. Az

előzetes eredményeink folytonos idejű bolyongások esetére azt mutatják, hogy itt is fellépnek nem-triviális

effektusok, annak ellenére hogy a modell alapvetően kevésbé gazdag az érmetér hiánya miatt.

A véletlen unitér műveletek aszimptotikus elméletében közvetlenül felhasználható a tiszta állapot

ansatz. Az általános módszer kiterjeszthető trace nem-megőrző rendszerekre is, azaz források és nyelők is

bevezethetőek. Ígéretesnek tűnhet a tiszta állapot ansatz kiterjesztése ilyen általános rendszerekre. Egy

másik érdekes kérdéskör a konvergencia, hiszen ez bizonyos modellekben igen fontos fizikai relevanciával

bír, pl.: fázisátalakulások válhatnának tetten érhetővé.

A diszkrét idejű kvantumos bolyongások entrópia-rátájának meghatározásának kérdéskörét egy kez-

deti lépésnek szántuk, mely segítségével az entrópia-ráta és a klasszikus-kvantumos határátmenet mélyebb

megértését reméljük. Kézenfekvő továbblépési lehetőség az entrópia-ráta kiszámítása általános kvantumos

rendszerekre és ezen keresztül a kvantummechanika sajátosságainak felismerése. Egy hasonló megközelí-

tést jelenthet olyan definíciók és mérési eljárások megadása ami segítségével egy rendszer kvantumossága

jellemezhető valamilyen entrópia-ráta-szerű mennyiség tükrében. Ehhez ígéretes jelöltnek tűnik az úgy-

nevezett kvantumos dinamikus entrópia (quantum dynamical entropy). Azt reméljük, hogy a témában

történő további kutatásaink segítségével egy kis betekintést nyerhetünk a klasszikus és kvantumos világ

között húzódó rejtélyes határmezsgyébe.
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(List of new scientific results in Hungarian)

1. Általános módszert adtam meg a perkolációs diszkrét idejű kvantumos bolyongások aszimptotiká-

jának megoldására. E módszer a véletlen unitér műveletek attraktor-tér formalizmusán alapszik,

melyet a diszkrét idejű bolyongások időfejlődésének definíciójában található érme-lépés operátorok

szerint szeparáltam. Megmutattam, hogy a szeparáció segítségével érmék és gráfok egész család-

jaira oldható meg az aszimptotika. Azt is megmutattam, hogy a véletlen unitér dinamikát leíró

szuperoperátor reguláris gráfokon a csúcsok számának függvényében polinomiálisan megkonstruál-

ható [I].

2. Megadtam egy módszert véletlen unitér műveletek aszimptotikus attraktorainak meghatározására.

A módszer gerincét a dinamika közös sajátállapotainak megtalálása jelenti, mely segítségével olyan

attraktorokat lehet konstruálni, melyek direkt fizikai jelentést hordoznak. Megmutattam, hogy

ezek a sajátállapotok egy dekoherencia-mentes alteret feszítenek ki. Azt is megmutattam, hogy

némely esetben a teljes attraktor-tér megadható a közös sajátállapotok és a triviális attraktor

(teljesen kevert állapot) segítségével. Erre az esetre is meghatároztam az aszimptotikus időfejlődést,

mely a dekoherencia-mentes altéren történő unitér dinamika és az erre merőleges altérre vetített

teljesen kevert állapot inkoherens keverékéből áll. Illusztráltam továbbá a megadott módszert a

perkolációs gráfokon történő diszkrét idejű bolyongáson és rámutattam a közös sajátállapotokon

alapuló módszer és az általános módszer közötti fontos különbségekre [II].

3. Explicit módon megoldottam az egydimenziós perkolációs kvantumos bolyongások aszimptotikáját

az általam kifejlesztett módszerek segítségével. Zárt alakban megadtam az attraktor-tér formuláját

a teljes SU(2) problémára perkolációs gyűrű és lánc gráfokon. Megmutattam, hogy az aszimptotika

nemtriviális, kvantumkoherenciát mutató stacionárius állapotok és határciklusok is létrejöhetnek.

Az aszimptotikus megoldások fizikai alakját is vizsgáltam, és felfedeztem, hogy lánc gráfokon a

legtöbb érme esetében élállapotok lépnek fel [III].

4. Perkolációs tórusz és szőnyeg gráfokon explicit módon megoldottam a kétdimenziós Hadamard és

Grover bolyongások aszimptotikus dinamikáját. Megmutattam, hogy a kétdimenziós Hadamard

bolyongás az egydimenziós változatával szemben pozíció-inhomogenitást mutat. Azt is megmutat-

tam, hogy a kétdimenziós Hadamard bolyongás a perkolációs esetben elveszti bizonyos elforgatási

szimmetriáit. A Grover bolyongás esetén azt találtam, hogy a közös sajátállapotok véges tartóval

rendelkeznek, tehát a bolyongás a perkolációs esetben is megtartja a zárt rendszerre (unitér eset)

jellemző csapdázás jelenségét [II].
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5. Módszert adtam meg a periodikusan mért kvantumos bolyongások entrópia-rátájának kiszámításá-

hoz. Megmutattam, hogy a periodikusan mért kvantumos bolyongások klasszikus Markov-láncként

viselkednek a pozíció-érmeállapot bázison és ennek a Markov-láncnak az entrópia-rátája megegye-

zik az előzőleg definiált sztochasztikus folyamatéval. Ezen entrópia-ráta felső és alsó határának

kiszámítására is megadtam egy módszert. Sűrű mérések esetére azt találtam, hogy a kvantumos

bolyongások entrópia-rátája általában alacsonyabb mint a megfelelő klasszikus bolyongásé, mely

az érmeállapot memóriaszerű viselkedésének következménye [IV].

6. Kidolgoztam egy közelítő protokollt, melynek segítségével a periodikusan mért kvantumos bolyon-

gások entrópia-rátája felülről közelíthető, illetve a ritka mérések esetére skálázódása kiszámítható.

Egydimenziós Hadamard bolyongás esetére kiszámítottam az entrópia-ráta skálázódását a mérések

közt eltelt idő (diszkrét lépések száma) függvényében. Azt találtam, hogy ritka mérések esetében

az entrópia-rátát a kvantumos bolyongás ballisztikus terjedése határozza meg, tehát az entrópia-

ráta magasabb mint a klasszikus rendszer esetében. A véges rendszerek esetét is megvizsgáltam,

és azt találtam, hogy az entrópia-rátában kollapszusok és feléledések is megjelenhetnek. Összeha-

sonlítás céljából az úgynevezett kvantumos entrópiát és a "legkvantumosabb" mérési eljárás esetét

is megvizsgáltam. Azt találtam, hogy ezek a megközelítések triviális eredménnyel szolgálnak, nem

árulnak el semmit a rendszer kvantumosságáról. Ezzel szemben az általam megadott klasszikus

entrópia-rátán alapuló módszer önmagában alkalmas eszköz lehet a vizsgált rendszer kvantumos-

ságának felderítésére [IV].
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Appendix

A. Entropy rate of one-dimensional Hadamard walk for waiting time

w = 2

We show our calculation scheme for the entropy rate of QW driven stochastic process Xk [Eq. (9:5)],

using the simplest nontrivial example of the one-dimensional Hadamard walk, driven by the coin (9:7).

Let us stick to the simplest case, when we initialized the walk in the coin state |L〉C at the origin, thus

c0 = L and w = 2. We apply U2 on |ψ0〉 = |0, L〉, resulting in the following quantum state:

U2|0, L〉 =
1

2
| − 2, L〉+

1

2
(−|0, L〉+ |0, R〉)

+
1

2
|2, R〉 . (A:1)

This yields some elements of Pα→β ( see Eq. (9:22) ):

PL→L = 1/4

PL→−L+R = 1/2

PL→R = 1/4 . (A:2)

We repeat this process again for the newly obtained coin states |R〉C and 1√
2
(−|L〉C + |R〉C), thus we

apply U2 again, and we calculate new elements of the transition matrix Pα→β as follows:

P−L+R→L = 1

PR→L = 1/4

PR→L+R = 1/2

PR→R = 1/4 . (A:3)

Note that in this second step, only a single new coin state 1√
2
(|L〉+ |R〉) appeared. Thus, we apply again

U2 on this new state to obtain the following:

PL+R→R = 1 . (A:4)
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We arrived to a complete coin state circle as no new coin states appeared, thus the Pα→β transition

matrix is complete. In the abstract coin state basis of L,−L+R,R,L+R it takes the form

Pα→β =
1

4


1 2 1 0

4 0 0 0

1 0 1 2

0 0 4 0

 . (A:5)

µ(α) is found readily as the left eigenvector of Pα→β corresponding to eigenvalue 1. Expanded in the

same basis as the transition matrix, it takes the form of

µ(α) =
1

6
(2, 1, 2, 1) . (A:6)

The single step missing is the calculation of the Shannon entropies H(pα(δ)), which can be done in a

straightforward manner, resulting in the following:

H (pL (δ)) =
3

2
bits

H (p−L+R (δ)) = 1 bit

H (pR (δ)) =
3

2
bits

H (pL+R (δ)) = 1 bit . (A:7)

Finally, employing Eq. (9:21), the entropy rate is

HQW
2 =

4

3
bits . (A:8)

In this particular example we restricted ourselves to initial state |L〉C . One can repeat the process

for a general initial coin state |c0〉C = l|L〉C + r|R〉C with |l|2 + |r|2 = 1. After a more involving but still

straightforward calculation it turns out that the size of Pα→β is still finite in this case, and the entropy

rate is 4/3 bits independently from the initial coin state. Moreover, this result holds true even for any

mixed initial coin states.

We repeat the calculation of entropy rate for w = 2 from initial coin state c0 = L = (LR) to

demonstrate the refined method using property (9:24). We write the transitions corresponding to the

abstract LR coin state

PLR→LR = 1/2

PLR→−L+R = 1/2 . (A:9)
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Investigating 1√
2
(−|L〉C + |R〉C) leads to

P−L+R→LR = 1 , (A:10)

and, hence, we obtain the transition matrix

Pα→β =
1

2

 1 1

2 0

 , (A:11)

in the basis of LR and −L+R. The asymptotic coin distribution µ(α) turns out to be 1
3(2, 1). According

to Eq. (9:24), the Shannon entropy of LR reads

H (pLR(δ)) = H (pL(δ)) = H (pR(δ)) . (A:12)

Thus, by employing Eq. (9:21), we obtain

HQW
2 =

4

3
bits (A:13)

again.

B. Approximating entropy rates of one-dimensional QWs

In the following we demonstrate the approximative method for determining µ(α) for the case of w = 2

and c0 = L(= LR). Here we note that for w = 2 the approximation is not necessary, but it is comparable

with our previous results and it is easier to follow than the w > 2 cases. We restrict ourselves to the

calculation of the exact mapping only for the initial state, thus

PLR→LR = 1/2

PLR→−L+R = 1/2 . (B:14)

Since we do not wish to calculate further, using Eq. (9:27) we get the following maps

P−L+R→LR = 1/2

P−L+R→? = 1/2 , (B:15)

where we used “?" to mark the set of unknown coin states |?〉C which we do not wish to determine (see

Eq. (9:29) ). To build a proper stochastic matrix we need an additional set of rules for the state “?",
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which, again using Eq. (9:27), are

P?→LR = 1/2

P?→? = 1/2 . (B:16)

Thus, the transition matrix on the basis of LR and −L+R, ? is

Pα→β =
1

2


1 1 0

1 0 1

1 0 1

 . (B:17)

The corresponding asymptotic coin distribution is 1
4(2, 1, 1). Using Eq. (9:32) we finish our calculation,

in this particular case Hmax = 3/2 bits and Hmin = 1 bit. Thus, the exact entropy rate is in the interval

HQW
2 = 1.3125± 0.0625 bits , (B:18)

which is surprisingly close to the exact 4/3 bits.

We move to the case of w = 3. For convenience, we use c0 = L(= LR) as the initial state. We apply

U3 on |ψ0〉 = |0, L〉 resulting in the following:

U3|ψ0〉 =
1√
8

(| − 3, L〉+ | − 1〉P ⊗ (−2|L〉C + |R〉C)

−|1, L〉+ |3, R〉) . (B:19)

Thus, we have transitions

PLR→LR = 3/8

PLR→−2L+R = 5/8 . (B:20)

Continuing with the new, yet undiscovered coin state, we obtain

P−2L+R→LR = 1/4

P−2L+R→4L−3R = 5/8

P−2L+R→L−2R = 1/8 . (B:21)

We end our calculation here and introduce the unknown coin state “?" once again. Using Eq. (9:27) we
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complete the transition matrix, arriving at

Pα→β =



3/8 5/8 0 0 0

1/4 0 5/8 1/8 0

1/4 0 0 0 3/4

1/4 0 0 0 3/4

1/4 0 0 0 3/4


, (B:22)

which is written with respect to the basis (LR,−2L+R, 4L−3R,L−2R, ?). From here, µ(α), pα(δ) can

be determined readily. With the use of Eq. (9:32), the entropy rate for the one-dimensional Hadamard

QW is in the interval

HQW
3 = 1.54± 0.08 bits . (B:23)

If we iterate the above procedure further, the interval (uncertainty) shrinks, i. e., the precision of the

entropy rate increases. For 11 iterations the entropy rate of the one-dimensional Hadamard QWs with

w = 3 is

HQW
3 = 1.499± 0.004 ≈ 3/2 bits . (B:24)
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