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Introduction

Walks are elementary processes that consist of a sequence of atomic steps. If the sequence of steps is
random, we call the process random walk [IH7]. In general, random walks follow the Liouville equation,
thus can be fully described and understood in terms of classical mechanics. Random walks are basic
mathematical tools, used to model a rich variety of physical systems. The path of a single dye molecule
in water (diffusion) [8HI2], the fluctuation of stocks [I3HI5| and temperature [16], the spreading of dis-
eases [I7H19], mass transport [20], steady states in nonequilibrium [2I), 22], Ising spin chains [23] [24],
evolutionary games [25], and surfing on the internet [26] 27] are amongst the typical examples of such
systems. In computational sciences it was also found beneficial to employ random walks, e.g. as an ap-
proach to describe probabilistic Turing machines. Throughout this thesis we will use the term classical

walk as a synonym for random walks.

However, there are countless walk-like phenomena in nature, which do not fit in the framework of
classical mechanics, e.g. the propagation of a single excitation in a crystal, the efficient energy transport
during photosynthesis [28] in plants or the spreading of quantum information on quantum networks. Such
phenomena called for the extension of walks to the quantum domain. We call these extensions quantum
walks [29H38]. Similarly to classical walks, quantum walks can model physical systems of many kind. In
fact, most quantum processes can be viewed as generalized quantum walks. Here, we have to note that
classical walks can be generalized to quantum walks in several ways. Naturally, these definitions are all
competing and complementing each other, however, most of them share a common point: They satisfy

the Schrodinger (von Neumann) equation or a Master equation.

By design, quantum walks are perfect candidates for modeling quantum transport [39-44], i.e. the
propagation of a single excitation on a graph structure. In quantum information theory [45, 46], quantum
walks are widely used to construct quantum algorithms, for example, to perform search on an unstructured
database [47-53]. Quantum walks are also universal primitives of quantum computation [54-56]: On a
quantum computer, the computation process is described by unitary (reversible) transitions between
elements of the state space. One can consider these elements as vertices of a graph, and the unitary

computation process as a quantum walk on this very graph.

Since their introduction, quantum walks gained considerable attention. Up to date, several aspects
of quantum walks were studied, all aimed to shed some light on the quantum features of this simple
model. The straightforward construction of quantum walks makes them suitable tools for studying some
properties of solid states materials. In particular, using quantum walk based models in the novel research
field of topological insulators [57HG1] is rather prosperous. The spreading nature of quantum walks

also makes them suitable for generating entanglement [62-66]. The von Neumann entropy, that is used
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to quantify the entanglement also allows for studying the thermodynamical aspects of quantum walks
[67,68]. Similarly to transport [39H43], perfect state transfer [69] can be understood in terms of quantum
walks. Decoherence in quantum walks can also lead to interesting behaviors, for a review see [70]. Several
other quantum phenomena are studied in terms of quantum walks, e.g. aperiodic behavior in chains |71],
effects of non-local initial conditions [72], movement in electric field [73], movement including jumps [74],
self-avoidance [75], and the effect of more internal states [76-79], localization in regular lattices [0} 1]
and symmetries [82]. Quantum walks can exhibit a self similar spectral structure [83] commonly known as
Hofstadter’s butterfly [84]. The Google PageRank algorithm have also been generalized to the quantum
domain using a quantum walk based definition [85]. The two-particle extension of quantum walks [86 87]
and its algorithmic uses [88] [89] are particularly interesting. Introducing even more particles can lead to
many-particle interference [90] and universal quantum computation [56], once again.

The universality and other promising aspects of quantum walks have caught the attention of experi-
mentalists. To implement quantum walks, several experimental schemes were proposed based on various
physical systems: cavity quantum electrodynamics [91], [02], Bose-Einstein condensate [93], linear optics
[94-96], optical angular momentum of light [97], parametric down-conversion in nonlinear crystals [98],
neutral trapped atoms [99, [I00] and Rydberg atoms [101] in optical lattices, ion traps [102], optical cavity
[103], superconducting qubits [104], semiconductor quantum rings [105] [106], array of quantum dots [107],
and artificial graphene [I08]. For a review on realization schemes, see [109].

In the recent years the number of actual realizations have grown significantly. Quantum walks have
been successfully demonstrated in optical lattices using single neutral atoms [I10, [I11] and trapped ions
[112, 113]. These experiments all share a similar approach: the internal state of the atom is rotated by
an electromagnetic field, then the atom is coherently displaced in the lattice corresponding to its internal
state. The repetition of this process realizes a discrete time quantum walk. A nuclear magnetic resonance
based experiment (realizing a quantum information processor consisting of three qubits) is reported in
[114]. Another promising realization family is the photonic quantum walk: These experiments are quite
diverse considering the media where the photons propagate. In integrated waveguide arrays [IT15H11S]
photons scatter between parallel waveguides of close proximity; their final position density is given by a
continuous time quantum walk. These arrangements are very well suited to study multi-photon (i.e. multi-
particle) walks and decoherence, as well. Experiments are also performed with linear optics efficiently
mimicking the optical Galton board [119), [120], using linear interferometer network [121] , and by the time
bin encoding of the position of the walker [122-125]. This latter approach is also suitable for studying
higher dimensional walks, multi-particle walks with interaction, and decoherence.

Errors in the underlying graph or lattice are a special source of noise in walks. For example, hot
water (liquid) passing through ground coffee (porous or granular material) or the robustness of computer

networks [126], 127] under attacks or power outage can be modeled with graphs, where connections are



broken with some probability. This concept is called percolation [128HI30)]. Percolation is extensively
studied in relation to classical walks. On the other hand, the question of the effect of percolation on
quantum walk models is rather new and there exist only a few studies on this topic [I31H137]. Most
quantum walks are defined via a unitary time evolution, having a closed system dynamics. The effect of
percolation can make the time evolution open, and in some cases the system can be described in terms of
random unitary operations [I38-140] (RUO maps). The first part of this very thesis aims to explore the
properties of quantum walks on percolation graphs using the analytical tools available for RUO maps.

In physics, the entropy is the most well known measure of the information content (or disorder)
[45], 46], 14THI44]. However, the definition of the entropy is very special, since it is the average asymptotic
information content per symbol for an independent and identically distributed ( i.i.d. ) sequence of
random variables (thus, for a stochastic process). Even for simple stochastic processes, e.g. Markov
chains (which, in fact, can be interpreted as classical walks on weighted, directed graphs), the entropy
is not a suitable measure for the asymptotic per symbol information content. In information theory,
however, ther exists a generalization, which is a suitable measure for general stochastic processes: the
entropy rate. As classical walks are the textbook examples of Markov chains, for which the entropy
rate is a meaningful definition. It is a rather interesting question whether for quantum walks (which
are quantum Markov chains) the concept of entropy rate is applicable. In this thesis, we address this
question in detail.

This thesis is organized as follows. In Part I. we overview the literature, give the basic definitions, and
establish the context of the thesis. In Chapter [1| we review the most influential definitions of quantum
walks and some experimental schemes. Chapter [2] is devoted to define the entropy rate of stochastic
processes and also to give its most important properties on which we later rely. The next chapter outlines
the asymptotic theory of random unitary operations (RUO maps). Finally, in Chapter , we review some
interesting aspects of walks on percolation graphs and also give a brief review of the literature.

Part II. is devoted to our own results. In Chapter [5| we adapt the asymptotic theory of RUO maps
reviewed in Chapter [3]to the problem of quantum walks on dynamical percolation lattices. We introduce
a pure state ansatz approach in Chapter [6] which gives a direct physical meaning for the asymptotics of
RUO maps, considerably simplifying their asymptotic analysis. We also show that percolation quantum
walks benefit form the ansatz. In Chapter [7] we elaborate on the complete problem of percolation walks
on one-dimensional graphs using the newly given methods. After acquiring the complete solution for
the one-dimensional system, we study some notable cases of the two-dimensional problem in Chapter
The Hadamard and Grover walks. Chapter [J]is devoted to study another disturbed quantum walk based
system, the periodically measured discrete time quantum walk in terms of the entropy rate. We develop
methods to perform the analysis and also compare different definitions of the entropy rate. Finally, we

summarize the new scientific results of the thesis.
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Chapter 1

Definitions of quantum walks

Quantum walks are always non-trivial generalizations of classical walks. The non-triviality is ensured

by the no-go lemma of Meyer [30]:

Lemma: “In one dimension there exists no nontrivial, homogeneous, local, scalar quantum cellular

automaton".

Consequently all non-trivial (useful) quantum walk definitions have to violate some of the conditions in
the above lemma. In this chapter we review the major types of quantum walks and their most important
properties. In Section we review the discrete time quantum walk, that we will use later as the basis
of our own research. In Section we give the definition of continuous time quantum walks, which is
particularly popular among those, who study quantum transport. In the next section another discrete
time model, the scattering quantum walk, is presented which is a straightforward model of computation
in quantum networks. In Section we give Szegedy’s quantum walk which is based on the quantization
of classical Markov chains, and is widely used as a tool for the theoretical studies in quantum information
theory. Finally, in Section we briefly sketch some basic experimental arrangements realizing quantum

walks.

1.1. Discrete time quantum walks

A discrete time random (classical) walk on a graph can be described by the following protocol: At
the beginning, the walker (particle) resides in a single (initial) vertex. Next, some random (stochastic)
process picks one from the immediate neighboring vertices. Following that, the walker is shifted to the
just picked new vertex. The repeated application of this algorithm is a discrete time random walk. The
most basic example is the unbiased walk of a particle on a one-dimensional integer lattice. Initially the
walker resides at the origin, labeled by 0. Next, a random process chooses from the nearest neighbors: in
this case the nearest neighbors are the sites 1. The choice can be based on a fair coin toss. Following
the coin toss, we place the particle to its new position depending on the state of the coin: either to the
site labeled by +1, or to the site labeled by —1. Then, the protocol is repeated again and again: following
every coin toss, we move the particle. The properties of this textbook example is well known, e.g. if one
asks for the probability distribution of the position of the particle, the answer is a binomial distribution,

and asymptotically it is the Gaussian distribution.
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The discrete time quantum walk (QW) extends the previous classical model using the mathematical
apparatus of quantum mechanics. Similarly to the classical walk, a single iteration step of the QW is
split into two operations: the coin toss and the displacement. To define this system we give its Hilbert
space first. Given a d-regular graph (or lattice) G(V, E) we define a position Hilbert space spanned by

state vectors corresponding to the vertices of the graph:
Hp = Span{|v)p|v e V}. (1:1)

Next, we use the fact that G(V, E) is a d-regular graph, i.e. that every vertex of G has d nearest neighbors:

We define an additional coin (or spin) Hilbert space using the d directions pointing to nearest neighbors
He = Span{|c) |[c € [1..d]} . (1:2)

Thus, the total Hilbert space of the system is a composite one:
H=HpRHc. (1:3)

We denote the Hilbert vectors of the position space by |v)p, the coin space by |¢) and the a vector on
the total Hilbert space by |v,c¢) = |v)p ® |¢). Throughout this thesis all matrixes are represented in this
natural basis, unless noted otherwise. Note that this construction breaks the scalarity in Meyer’s no-go
lemma by introducing the coin space.

Let us now move on to constructing the discrete time evolution on this Hilbert space. Mimicking
the classical discrete time walk, we should define a coin tossing operation first. As in the classical case,
the coin toss should not affect the position state (distribution) of the walker and also should be local.
Furthermore, quantum mechanics requires unitarity. Thus, a general coin toss operator has the following

form:
=Y [v)plp&C, where C,€U(d). (1:4)
veV

In most cases the coin is assumed to be independent from the position:
I'=Ip®C where Ce€SU(), (1:5)

where Ip is the identity operator in the position spaceﬂ In this way, the homogeneity property of Meyer’s
lemma is kept. Throughout this thesis, we will always assume that the coin is position independent, unless

! As the coin become homogeneous, the global phase of the coin will be neglected in the dynamics: SU(d) coins can be
used without losing generality.



it is noted otherwise.

We now continue with the definition of the displacement operator, that is:

S = Z Z v e, c)(v,cf. (1:6)

veV cell..d]

Here, the abstract sum v @ ¢ denotes the nearest neighbor of vertex v in direction ¢. As in the classical
case, the outcome of the coin toss determines the direction of the displacement. We note here that the
time required for the displacement is negligible for both the classical and quantum discrete time models,

thus the transition is considered to be instantaneous. Finally, a single time evolution step is defined as
U=ST=S(IpxC). (1:7)

The actual discrete time quantum walk procedure is given by the repeated application of the single time

evolution step U

(1)) = Ule(t — 1)) = U'[4(0)) - (1:8)

We note that measurement is not included in the definition of the system, so the whole process is unitary,
and thus deterministic. We also note that this unitary time evolution definition is rather general, in some
cases even stricter (less general) definitions can cover all possible dynamics [145]. In case of discrete time
quantum walks, measurement usually means a position von Neumann measurement, ¢.e. the measurement

of the observable

P = Z Z vlv, e) (v, c|. (1:9)
veV cell..d)

The first discrete time quantum analogue of the classical walk using an additional coin (spin) degree
of freedom was proposed by Aharonov et al [29]. However, that very protocol included a von Neumann
measurement, thus it is not a purely unitary process. Later, Meyer [30] have given a full unitary definition,
which we summarized above. Since the combination of the coin space and the coin operator is the key
driving mechanism of the discrete time quantum walk, we also refer to this model as the coined quantum
walk. We note that recently an analogous model, called the “coinless quantum walk" has also been
introduced [146]. This model can be understood as a coined quantum walk where the tensor product
form of the Hilbert space is not enforced and is actually hidden: unitary rotations simply act on position
states instead, breaking the homogeneity in Meyer’s no-go lemma.

In this thesis we focus on discrete time quantum walks. Some of their most important properties are

reviewed in the following.
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Figure 1:1. Comparison of the classical walk (dashed line) and the discrete time quantum walk (continuous line) on
a one-dimensional integer lattice after 100 time steps. Probabilities at the odd sites of the lattice are not plotted,
since for even number of steps the probabilities at all odd labeled sites are zeros. The data points are connected
to guide the eye, and to emphasize the interference fringes.

1.1.1. Basic properties, the one-dimensional Hadamard walk

Let us employ the definition given above to describe the motion of a quantum particle on a one-

dimensional integer lattice. The Hilbert space (cf. Egs. (1:1)-(1:3) ) is a composite:

H=Hp®RHc, (1:10)
where
Hp = Span{|v)p|v e Z}, (1:11)
and
He = Span{|L),|R)} . (1:12)

Here, |L) and |R) represent the directions left (decreasing the position state index) and right (increasing

the position state index), respectively. According to Eq. (1:6]), the displacement operator is given as

s=% <|v—1,L><v,L|+|v+1,R><v,R|>. (1:13)

vEZ

We represent the coin operator using the usual SU(2) parametrisation

C(n)=exp(—i(n-o)7n/2), (1:14)
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where o denotes the vector of the Pauli matrices. The typical textbook example of the one-dimensional

quantum walk is the one driven by the Hadamard coin:

Chy = ﬁ _— (1:15)
which we can obtain from Eq. by choosing n = (0,1/2,0). This coin has an interesting property:
the magnitude of each of its elements is equal, consequently it shows a well defined classical correspond-
ence: Should one measure the position of the walker after each single timestep, the walk reverts to the
classical one-dimensional discrete time walk. Such coins are called balanced or unbiased. If one measures
a biased discrete time quantum walk after each step one will not obtain a classical Walkﬂ

Since the definition of the system is homogeneous in space, i.e. translation-invariant, the quasi-
momentum of the particle is a good quantum number. Consequently, the time evolution simplifies

considerably in the momentum picture:

U(k)=D(k) - C = o ]-C. (1:16)

The position and momentum pictures are connected through the Fourier and inverse Fourier transform-

ations:
P(k,t) = (v, )P (1:17)
VEZ
and
=t " k,t)e k) K 1:18
¢(U7)—%0 1/}(7)6 . ( )

Here, ¥ (v, t) denotes the two-component (coin) spinor of probability amplitudes:

v, L|(t
P(v,t) = (o, Liw(®)) . (1:19)
(v, Ry (1))
The unitary (undisturbed) evolution of quantum walks exhibits interesting properties. The spreading
(average mean distance from the expected value) of the system is ballistic, thus, linear in time. On the

other hand, classical walks show diffusive spreading, i.e. a square-root dependence with respect to time

(number of steps). Thus, the quantum walk spreads quadratically faster. This is quite an usual but

2 The obtained classical process is not a walk in the sense that it is not a classical Markov chain, however it is still a
classical stochastic process (See Chapter . A similar quantum system is discussed in Chapter @
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Figure 1:2. Modeling scattering through a potential barrier (gray area) using a discrete time quantum walk.
Between positions 0 and 5 the Hadamard coin is used. At the other positions the particle can fly without
scattering, thus the coin operator is the identity. The strength (height) of the potential barrier can be tuned with
the parameters of the coin.

expected property of quantum walks on regular lattices. We show the typical two-peaked quantum walk
distribution in FIG. Naturally, the spreading also affects the so-called hitting time, which is the
expectation of the time it takes for the particle to reach a given vertex. On regular lattices the hitting
times are usually quadratically lower, i.e. quantum walks hit quadratically faster. On some special graphs
the hitting time of a quantum walk can even be exponentially larger or smaller compared to the classical

hitting times [35] 147, [148].

The ballistic spreading also affects the return probability — the so-called Pdlya-number — of the walk
[149]. While in the classical case the Polya number is determined by the dimension of the underlying
graph, in quantum walks the graph, the coin and also the initial state affect the Pélya number [I50HI55].
We have to note here that in the definition of all these probabilities — hitting times and Pélya numbers

— the measurement and the preparation process must be taken into account.

One can also observe quantum interference effects in quantum walks. The interference fringes between
the peaks of a typical two-peaked distribution is one such place, and it is arising from the interference
between the left and the right propagating parts of the wave function. Also, one might employ quantum
walks to model scattering through potential barriers, or even single- and double-slit experiments [156].

This scattering behavior is illustrated in FIG. [I:2
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1.1.2. Two-dimensional quantum walks

This section is devoted to the description of the two-dimensional quantum walk model [80]. We will
focus on the two-dimensional Cartesian lattice (square lattice), however, there are several other two-
dimensional graph structures of interest in the research of quantum walks, e. g. the triangular,the
honeycomb and the Kagome lattices [V] [50} 157, 158].

The position space is spanned by state vectors with two integer indices, corresponding to the coordinate

labels of the square lattice:
Hp = Span {|z,y)p | (z,y) € ZQ} : (1:20)

The coin space is four-dimensional because a single lattice point has 4 immediate neighbors. However,
the definition of the coin basis states and the corresponding unit shifts are ambiguous in the literature.
It is possible to define the shifts to represent hopping in the diagonal direction, e.g. |z,y) — |[z+1,y+1).
The advantage of this approach is that the corresponding step operator has the form of S ® S, i.e. the
tensor product of steps of one-dimensional quantum walks. Thus, such definition might allow us to see
the single two-dimensional particle as two non-interacting one-dimensional particles, as long as the coin
also has a tensor product structure. On the other hand, shifts can represent displacement to the actual
nearest neighbor, e.g. |x,y) — |z + 1,y). In this thesis, we will follow this latter approach. Thus, the

coin space is defined as:
Hc = Span{|L), |D), |U),[R)} . (1:21)
A single step of the time evolution is given by
U=5SIp®(C), (1:22)
where

S: Z <|$_17217L><=T,yaL|+|$7y_17D><$ayaD’
(z,y)€Z2

.y + LU @,y Ul + o+ Ly, R) @,y Rl (1:23)

and C' € SU(4). We note that 4 x 4 matrices acting on the coin space will be represented in the
|L),|D),|U),|R) basis. The boundary conditions (topology) of the underlying graph are reflected in
the displacement operation S, e.g. periodic boundary conditions (tori) are considered by taking modulo

addition and subtraction operations in Eq. (1:23).
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Figure 1:3. Position distribution of the Hadamard walk driven by the coin (1:24]) on the Cartesian square lattice
after 30 steps. The initial state of the system was ) =10,0)p @ (|L) —i|D) —i|U) — |R)) /2.

Let us show the three most prominent examples of the two-dimensional quantum walks. The first is

the walk driven by the 4 x 4 Hadamard coin, i.e.:

1 -1 -1 1
111 1 -1 -1

CP =CyreCh =~ : (1:24)
2011 141
1 1 1 1

The key feature of the Hadamard walk is that it is similar to a two-particle one-dimensional quantum

walk, its distribution is dominated by four, ballistically moving peaks. We illustrate this walk on FIG.

The next is the Fourier walk, driven by a discrete Fourier transform matrix:

Cr

(1:25)
1 — -1 ¢

This walk exhibits a slowly propagating central peak. Also, for a family of initial states |[pRin8) =
|20, Y0) p @ (a|L) + b|D) + a|U) — b|R)), (with |a|? + |b|?> = 1/2) the central peak vanishes, and a ring like
distribution emerges. This walk is illustrated in FIG. [T:4]
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Figure 1:4. Two possible position distributions of the Fourier walk driven by the coin on the Cartesian
square lattice after 30 steps. The plot on the left shows a typical distribution, which is dominated by a slowly
propagating central peak. The initial state of the system was |¢) = [0,0)p @ (|L) + |D) + |U) + |R)) /2. The plot
on the right shows the ring like distribution we get by using |¢) = |0,0)p @ (|L) + |D) + |U) — |R)) /2 as the initial
state.

Finally, we show the Grover walk, which is driven by the Grover diffusion operator:

-1 1 1 1
1 1 -1 1 1
Co=-= . (1:26)
2 1 1 -1 1
1 1 1 -1

The Grover walk exhibits some rather interesting behavior. Almost all spatially local initial states remain
spatially local (trapped) during the whole time evolution, i.e. the probability of finding the particle at
the origin never decays to zero. This characteristic phenomenon is called trapping or localization |80, [8T].
However, for a well defined initial state [yN1) = |xg,y0)p ® (|L) — |D) — |U) + |R)) /2 this localization
type of behavior is avoided; the walk exhibits a ring like distribution. We illustrate this behavior in
FIG. Furthermore, the Grover walk serves as the basis for several quantum walk based search

algorithms [47H53]. We overview one such search algorithm in the next section.

1.1.3. Quantum search

Quantum walks — similarly to classical walks — are suitable for performing and modeling searches
on graphs. It is well known in the field of quantum information that the Grover algorithm [I59] provides
quadratic speedup in terms of oracle queries over any classical algorithms. That corresponds to O(\/N )
expected queries in the quantum case, in contrast to the expected number of O(N) queries for classical

algorithms (Turing machines). It is shown in the literature of quantum walks that this quadratic speedup
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0010 ¢~

Figure 1:5. A typical position distributions of the Grover walk driven by the coin on the Cartesian
square lattice after 30 steps. The plot on the left shows the characteristic peak of the trapping phenomena:
during the whole time evolution this peak never decays to zero. The initial state for the plot on the left was
[¥) =10,0)p @ (|L) + |D) + |U) + |R)) /2. The plot on the right shows the ring like distribution, which avoids the
trapping effect for a single, well-defined initially localized state ) = |0,0)p @ (|L) — |D) — |U) + |R)) /2

can be achieved by using a quantum walk model, which translates into finding a marked vertex (or even
more marked vertices in a generalized case) on a graph structure [47]. In the discrete time quantum
walk model the “mark" on the element is given by a modified coin operator. Here, we briefly review a
quantum walk based search performed on a torus [48H50]. We note that this particular algorithm does
not provide the full quadratic quantum speedup, instead, it has a O(y/N log N) runtime. However, since
it uses a simple two-dimensional graph structure, it is rather convenient to use it as an illustration for

the quantum walk based searches.

Let us employ the definitions of the two-dimensional discrete time quantum walk model from the
previous section. We choose the underlying graph to be a vV IV x /N torus, i.e. a Cartesian lattice with
N sites (database elements) and periodic boundary conditions. The coin operator of the walk is a slightly

modified version of the Grover coin:

1 1 1-1
1 1 1 -1 1

Cs =Cglo; ®oy,) = 5 . (1:27)
1 -1 1 1
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P o001

Figure 1:6. Search on a 20 x 20 (N = 400) torus. The plots show the probability distribution at different time
steps. The data is illustrated with a joined 3D mesh (texture) to guide the eye. The marked state is the |5,5)p.
At the beginning (¢ = 0) the initial state is a uniform superposition of all states. During the walking process,
constructive interference forms at the marked vertex (¢ = 5), and it reaches its peak for the first time at step
t =29 ~ v2N. Following that, the peak decreases, and even drops below the probability value of any unmarked
peaks, reaching its minimum around ¢ = 64.

~ 1V N

025¢
020"

0.10
005"

Figure 1:7. The probability of finding the single marked vertex on a 20 x 20 (N = 400) torus. The first peak
appears after 2N steps, i.e., that is the optimal time to perform the measurement. The height of the peak is
O(1/log N). The data points are joined to emphasize the periodicity. The length of a period is ~ 7V N steps.
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In search algorithms we mark vertices by using a special coin. In this case the marker coin is

0 0 0-1

0 0-1 0
Cy=-—-0,Q0; = . (1:28)

0-1 0 O

-1 0 0 O

Thus, the full coin toss operation is given as:
D= |z)plalp®@Cs+ Y la)plzlp ® Cur, (1:29)
xgM zeM

where M is the set of marked vertices. Here we consider only a single marked vertex, thus |[M| = 1. The

initial state of the search os search is:

1 VN-1
lps) = Wi Yo > lmwe). (1:30)
2,y=0 ¢={L,D,U,R}

It is proven [49, b0] that after V2N steps the probability of finding the walker at the marked vertex
reaches a peak. However, we have to note that the probability of finding the particle at the marked
vertex is not high enough. In fact, scales as O(1/log N) with the number of total elements (vertices). In
order to achieve the practically useful probability of O(1) one can employ the amplitude amplification
method [160]. Thus, after O(y/Iog N) repetitions the probability of finding the marked vertex is raised
to O(1). In summary, the total runtime of the algorithm is O(v/Nlog N). We illustrate this search
algorithm in a numerical example in FIG. [[:6| and FIG. [I:7]

1.2. Continuous time quantum walks

In discrete time walks there is a well-defined time instance, when the transition of the particle (hop-
ping) happens instantaneously. However, in some physical processes this transition is not sharp or
periodic. For example, only the rate of transitions are known, that is the number of transitions (steps) in
a given period of time. In such cases a continuous time description is desirable. For classical walks there
is a straightforward connection between the discrete time and the continuous time version. The key is to
take the limiting case of the discrete time model by simultaneously going with the number of steps and
with the length of steps (in space), to infinity and to zero, respectively. The result is a diffusion process,
where, from a single initial § distribution a Gaussian distribution emerges, which spreads with the square

root of time. However, there are two key differences compared to the discrete time version: First, after
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even infinitesimally small time the particle will have an exponentially low, but finite probability to ‘“‘jump"
far from its initial position. Second, the positions are not discrete anymore. We note that the method
outlined above — taking the simultaneous limit, i.e. by going with the number of steps to infinity, and
with the length of steps to zero — can be performed on discrete time quantum walks, and will result in

a so-called weak limit [I6THI63].

Continuous time quantum walks [31, [34] have a different approach. The simple discrete graph structure
is kept, but the transition time is not sharp like in its discrete time counterpart — the time evolution
is continuous, not stroboscopic. Let us give the formal definition in the following. The Hilbert space of
continuous time quantum walks on a given G(V, E') undirected graph is spanned by vectors corresponding

to the vertices of the graph
H = Span{|v) |[v € Z} , (1:31)

i.e. it coincides with the position space of discrete time quantum walks. The time evolution is governed

by a Hamiltonian given by its elements as

—~  if there is an edge between verticesand j
(i|[H|j) =< dy ifi = jwheredis the degree of the vertex (1:32)

0  otherwise.

Here, v € R, v > 0 is the rate of the continuous time quantum walk. We note that the off-diagonal
elements of the Hamiltonian is the adjacency matrix of the graph G(V, E) (up to the rate ). Also, one
can view the Hamiltonian as a discrete Laplacian. The time evolution is given as the formal solution of

the time-independent Schrédinger equation, i.e. as the exponential of the Hamiltonian:
|9(t)) = exp (—iH?) |1(0)) . (1:33)

We note that similarly to the classical case the walker has a finite, exponentially small probability to
appear far from the origin. If we consider a continuous time quantum walk as a cellular automaton by
restricting it to discrete time steps, we can see that it breaks the locality in Meyer’s no-go lemma. This
non-locality shows that there are some important differences in the definitions of the discrete time and
continuous time models. In the discrete time case only the unitary form of the time evolution operator
is defined, and the graph structure is encoded through the displacement operator S ( see Eq. ).
In the continuous time case, the Hamiltonian reflects the underlying graph structure. Consequently,
should one construct any unitaries from such a Hamiltonian, it would contain non-nearest neighbor

interactions (jumps). In fact, a similar analogy holds for the discrete time case too: should one deduce
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Figure 1:8. Comparison of the position distribution of a continuous time quantum walk (thick line) with a discrete
time quantum walk (thin line) on a one-dimensional integer lattice at ¢ = 100. Both models exhibit ballistical
spreading. We have chosen 7 = 0.3827 as for this rate the variance of the two distributions coincide. For the
discrete time model, only the even sites are plotted, because for even number of steps the probabilities at all the
odd labeled sites are zero. The plotted data are represented by connected lines to guide the eye, and to emphasize
the interference fringes.

a quasi-Hamiltonian from the unitary time evolution operator, one would find that the Hamiltonian
contains non-nearest neighbor interactions, too. The resolution of the apparent contradiction is that the
exponential “tail" of the wavefunction vanishes due to destructive interference.

Another difference is that the discrete time variant inherently contains the additional coin degree
of freedom, whereas continuous time quantum walks are defined without a coin. Connection between
discrete time quantum walks and continuous time quantum walks exists, albeit it is non-trivial [164H166].

The continuous time quantum walk model has similar properties as its discrete time counterpart.
In fact, it also exhibits ballistic spreading on regular lattices, and is suitable for designing quantum
algorithms, e.g. searches [167, [168]. For comparison, we illustrate both models on the line in FIG.
By design, continuous time quantum walks are suitable for modeling transport of single excitations on
undirected graphs [39-41] [44]. Also, by adding imaginary terms to the diagonal of the Hamiltonian,
sources and absorbers (detectors for a continuous weak measurement) can be added in a straightforward

manner [169].

1.3. Scattering quantum walks

Quantum walks naturally represent the spreading of a wave packet on a quantum network. In most
of the cases the graph G(V,E) corresponding to a quantum network is viewed as vertices and edges
representing the positions where the walker can reside and the possible unitary transitions (movement)
between such sites, respectively. However, there is another approach for quantum walks where the role
of these two sets are reversed: the so-called scattering quantum walks [32), 170, I71]. In this section we
briefly review this model.

Given a G(V, E) undirected graph, the Hilbert space of the walk is spanned by:

H = Span{|i, j)|i,j € V where (i,j) € E} , (1:34)
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i.e. by pairs of vertices connected with an edge. Note that a single undirected edge connecting two sites
a and b gives two basis states: |a,b) and |b,a). That is, an undirected edge is viewed as two directed
edges connecting a pair of sites. We note that like in the discrete time quantum walk model, this model
breaks the scalarity in Meyer’s no-go lemma. The action of a single discrete time evolution step on a

state is defined as:

Ula,b) = 7@ |b, a) + > @G ) (1:35)
c€V where (b,c)EE

a,b)

that is, the particle suffers a backscattering with amplitude r@b) and it is scattered forward with

amplitudes ¢(*?) &) Unitarity is ensured by selecting proper complex 7 and ¢ coefficients.

The whole process can be understood more clearly using an interferometric analogy. The vertices
represent optical multiports while the edges are the paths connecting them. The two quantum basis
states corresponding to an (undirected) edge represent the two directions: |a,b) means that a photon
propagates towards multiport b, while |b, a) represents a photon flying towards multiport a on the same
path. Naturally, these two photons cannot interfere (scatter) with each other. To summarize, the
quantum walk process describes a single photon passing through the network of optical multiports. The
advantage of this approach is that it can be applied to any undirected graph structure, and even to some
special directed ones. Like all quantum walk models, this scattering approach is viable for constructing

quantum algorithms [52] [172].

Let us illustrate this model on a one-dimensional integer lattice. The Hilbert space can be given in a

simple form
H = Span{|i,i+ 1), i+ 1,3)|i € Z} . (1:36)

The most straightforward multiport between two neighboring edges is a 50/50 beamsplitter, described

by the Hadamard matrix:
B=— . (1:37)

Thus, the unitary time evolution operator has the form:
1
U= Z\ﬁ(|z’+ 1,6+ 2)(i, 0+ 1| + i+ L,a)(iy6 + 1+ [d,d — 1)(i + 1,4 — |i,5+ 1)@+ 1,0]) . (1:38)
€D

We illustrate the probability distribution of this scattering walk example in FIG. [I:9 We note here that

on regular graphs the scattering walk is unitarily equivalent with a well constructed discrete time quantum



22 1.3 Scattering quantum walks

0.12
0.10
0.08

P oo
0.04
0.02
_80 _40 0 40 80
XT

Figure 1:9. The position distribution of a scattering quantum walk on a network of 50/50 beamsplitters, described
by the matrix B of Eq. (1:37). The walker took 100 steps and started from the state |0,1), i.e. a photon flying
to the right. The data points in the plot are joined with a line to guide the eye and to emphasize the interference
fringes.

walk. It is easy to illustrate this equivalence on the current one-dimensional example by relabeling the

states as

li,i+1) = |i+1,R)

for all ¢ € Z and using the transpose of B as the coin operator: The resulting walk is the one-dimensional
discrete time Hadamard walk of Section One of the major differences between the two approaches is
the position measurement process: although in Eq. the states of the scattering walk |i,i+1), |i+1,7)
represent the same edge, thus the same position, the corresponding discrete time quantum walk states
li + 1, R),|i, L) are at different position (vertex). Consequently, measuring the edges as positions in
the scattering model and measuring the vertices as positions in the discrete time model will produce a

different probability distribution, albeit there is a unitary equivalence between them.

1.4. Szegedy’s quantum walk

A Markov chain is a discrete time stochastic process without a memory. All Markov chains can be
viewed as classical walks. In fact, time invariant Markov chains can be described through stochastic
matrices P, whose elements satisfy )  P,,, = 1. This matrix can also be viewed as an adjacency
matrix of a directed weighted graph, which is the underlying position graph of a classical walker. Then,
a single step of time evolution is given by the application of P to the probability distribution (classical
state) on the vertices.

The quantization of such classical walks (Markov chains) is not trivial. However, Szegedy provided
[33] a robust mathematical construction for quantizing such systems. Such walks are called Szegedy’s
quantum walks. In this thesis we show a simplified way to construct such walks, and we stress that

consequently this approach is not as general as the original definition given by Szegedy in [33].
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The first idea comes from the construction of discrete time quantum walks: to successfully construct
a discrete time (nearest neighbor) unitary process some non-trivial add-ons are needed. In the case of
discrete time quantum walks that add-on is the coin space. However, in Szegedy’s walk the position space
is doubled, thus once again, the scalarity is broken in Meyer’s no-go lemma. Secondly, the time evolution
somehow resembles the reflection in the Grover search. In fact, the time evolution of Szegedy’s walk
consists of reflections between these doubled position spaces. Lastly, the position measurement involves

tracing out one of the position spaces.

Let us present the definition. The single position space is spanned by the states corresponding to the
vertices V' of the graph G(V, E') which are from the index set for P, ,,. Thus the full (doubled) Hilbert

space is given by
H = Span{|n,m) |n,m e V}. (1:40)

Note that this Hilbert space can be viewed as the composite Hilbert space of two single particles with
state vectors [n); ® |m)a = |n,m). For better understanding we will use this two-particle picture. To

give the time evolution, first we define quantum states that encode the elements of P:
6(n)) = >/ Pamln,m) . (1:41)
meV
Next, a reflection is defined on these states
F=2% |p(n)(¢(n) —1I. (1:42)
nev

It is straightforward to see that F' is unitary, and its act on the first part (first particle) of the position

space is identity:

Try (F) = Y ((n,m|F|n’,m)) - [n)(n'| = I, (1:43)

n,n’,m
that is, it only affects the second abstract particle. To complete the time evolution, an additional step is
needed: a reflection representing a P which acts on the first particle. This can be achieved by swapping

the two particles through a generalized swap operation:

W=>"|m,n)n,m]. (1:44)

m,n
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Figure 1:10. The position distribution of Szegedy’s walk on the line after 20 steps. The corresponding classical
Markov chain is given by a matrix with elements Py, m+1 = Pmm = Pm,m—1 = 1/3 for all m € Z, i.e. the walker
would step to the left, to the right or stay at its current position with the same probability. The two small outward
propagating peaks at sites +16 are responsible for the ballistic spreading of the quantum particle. The discrete
data points in the plot are connected to guide the eye.

Finally, the complete form of the unitary single step time evolution operator is:
U=FW. (1:45)

We illustrate this walk in FIG. [I:10l

Szegedy’s walk is a very powerful mathematical tool suitable for quantizing general classical Markov
chains. In contrast, constructing quantum walks on directed or weighted graphs using the models dis-
cussed in the previous sections are not straightforward, and might be possible only with radical changes
in their definition. Due to the very general definition Szegedy’s walk is a handy mathematical model used
mainly in quantum information theory for designing quantum algorithms, and proving their efficiency.
Like all other types of quantum walks, Szegedy’s walk is also capable of performing a quadratically
faster search [33]. However, we note that due to the doubling of the position space, and the rather ab-
stract reflection concept included in the time evolution operator, Szegedy’s walk is quite hard to realize

experimentally and up to date there are no known experiments focusing on this very model.

1.5. Optical realizations

The optical realization of quantum walks were always appealing, since they consist of a straightforward
way to illustrate and construct physical systems (experiments) simulating quantum walks. The most
straightforward concept is the optical Galton board [94], (119, [120], which is an interferometric analog of
the mechanical Galton board: the spikes are replaced with beamsplitters, and photons propagate instead
of balls. A single photon running through the Galton board goes through constant splitting and re-joining
1.e. self-interference, and in the end it realizes a discrete time quantum walk. The very drawback of using

optical Galton boards is that the number of optical elements (beamsplitters) needed scales exponentially
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Figure 1:11. The optical Galton board implementation of quantum walks on the line. The thick lines represent
beamsplitters. The advantage of this setup is that it is easy to understand, and also it is easy to tune the individual
parameters of the walk, i.e. the coins (beamsplitters) can be different in space and time. In this scenario the number
of steps is fixed — the arrangement in the figure shows a 5 step quantum walk. With the number of steps, the
number of needed optical elements (thus, resources) increases exponentially, thus this implementation is not really
practical.

with the number of steps the quantum walker takesﬂ We illustrate this arrangement in FIG.

A more promising approach comes from scattering quantum walks ( See Section ): a photon
propagating through a one-dimensional array of beamsplitters would make a suitable experimental scen-
ario [94], where the number of optical elements only scale linearly with the number of steps. However,
here the detection of the photon is not trivial: a possible solution is to weakly couple the photon out
from the interferometer at every positions, and detect it there. However, the static outcoupling intro-
duces further uncertainty when it comes to the numbe of steps taken, the measurement (which disrupts
the walk process, since the photon is absorbed) might happen after any number of unitary steps and

cannot be fixed like in the Galton board scenario. We illustrate this possible experimental configuration

in FIG. [L12

Schreiber et al. [122] have given an approach, which circumvents the need for more and more optical
elements with growing number of steps. Let us shortly review this experimental scenario here. The first
idea is that the position of the walker is encoded in the time of arrival of a single photon. That is, a single
detector detects the photon and the time of the detection gives the position value of the walker. The coin
state of the particle is encoded in the polarization of the photon: vertical polarization corresponds to the

coin state |L) and horizontal to |R). First, the photon flies through a half-wave plate which carries out

3 Using exponential physical resources to simulate quantum walks is rather inefficient. Considering finite numerical preci-
sion, even just brute-force classical computer simulations would use resources that scales polynomially with the number
of steps.
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Figure 1:12. The scattering approach to the quantum walk on the line. The photon scatters through a linear
system of beamsplitters (thick lines), while other beamsplitters with high transmittivity (gray thick lines) send the
photon to detectors. In this arrangement the number of elements needed scales linearly with time. (However, one
can consider reflective or periodic boundary conditions, where the number of elements might be kept fixed.) On
the other hand, since the detectors are built-in elements of the arrangement and they perform a measurement at
every time step, the time the photon spends in the interferometer is also not-fixed, i.e. measurement (detection)
might happen after any number of steps.

the coin operation

cos20  sin260
C = . (1:46)

sin 260 — cos 20
Here 6 is the rotation angle of the half-wave plate relative to one of its optical axes. Next, the photon
is split according to its polarization by a polarizing beamsplitter. The vertically polarized part ( |L)¢
) enters a delay loop (a considerably longer optical path) that adds a time-delay, while the horizontal
part ( |R)¢ ) flies through without the delay. The two parts of the wavefunction are eventually joined

by a polarizing beamsplitter. This procedure corresponds to a single step of a quantum walk, where the

time-of-arrival of the photon encodes a single step. We illustrate this in FIG. [1:13]

The key idea is that the repetition of a single step can be carried out by feeding back the output
of the interferometer to its input. In this way the walker can take several steps without adding more
optical elements. The feeding back is actually performed through a beamsplitter: One of the inputs
and outputs of the beamsplitter are connected to the single-step interferometer, while the other input is
the port where single photons enter the arrangement and the other output port is where the detector is
placed. The complete arrangement scheme is given in FIG. Like in the scattering example given
above, the number of steps taken is not fixed, since the detection (outcoupling through the beamsplitter)
is static, i.e. no one can guarantee that a photon entering the circuit will take a well defined number of
steps before it is measured. This is the very drawback of this experimental setup. The time of detection
(the amount of time that a photon spent in the interferometer) naturally corresponds to the number of

steps taken through the walk, and on a finer timescale it gives the position of the walker.

The setup is quite flexible as the number of optical elements used are quite low, and it is remarkably
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Figure 1:13. A single step of the delay-loop experiment. The superposed photon of the first step arrives from the
left: its internal state (polarization) encodes the coins state, while the arrival time encodes the position. First, the
half-wave plate realizes a rotation of the polarization, thus a coin operation ( See Eq. ). Next, a polarizing
beamsplitter splits the signal and the vertical |L)¢ part suffers a delay which corresponds to a step to the left.
(Consequently, the non-delayed flight of the horizontal |R)c part corresponds to a step to the right.) The two
parts are joined by a polarizing beamsplitter, and the step is finished. This figure is taken from [122].

Coin-HWP
HWP QWP

>

Figure 1:14. The setup of the delay-loop experiment. The pulse-operation laser is attenuated to a single-photon
level via a neutral density filter (ND). It is followed by a polarizing beamsplitter (PBS), half-wave plate (HWP)
and quarter-wave plate (QWP) which prepare the initial state of the system. The photon enters the quantum
walk interferometer through a beamsplitter (BS). Also through the same beamsplitter the photon walking in the
interferometer might exit and be detected at the avalanche photodiode (APD). This figure is taken from [122].

easy to change the coin operator. For example, with active optical elements, the coin can be changed
throughout the walking process, thus even open quantum walks can be studied with this setup [123].
Also, by adding more delay loops, thus introducing new timescales at the detection, the setup can be

extended to simulate higher dimensional walks [124].






Chapter 2

Entropy rates of stochastic processes

2.1. Definition of the entropy rate

It is well known [I41] in information theory that the Shannon entropy
H(X) == px=X)logyp(z = X) (2:1)
xT

quantifies the average information content of a random variable X. Here, by p(x = X) we denote
the probability that X takes the value z. For a sequence of independent and identically distributed
(i.i.d.) random variables X; the total information content grows linearly with the addition of new
random variables, and equals n - H(X), where n is the total number of random variables. This statement
is established by the asymptotic equipartition property. We stress that the Shannon entropy is only

applicable for the special sequences satisfying the i.i.d. criteria.

In general, in an indexed sequence of random variables X = X ..., X,,, — called a stochastic process
— the random variables are not necessarily identically distributed and independent. In this case the
entropy rate

1
H(X) = lim —H (X1, Xa,...,Xn) (2:2)

n—oo M

replaces the entropy in the asymptotic equipartition property. In other words, it describes the average
asymptotic information content of a stochastic process per sample. Here we note that usually the index
of a stochastic process is viewed and referred to as time. One can expand the previous formula using the

definition of the joint entropy
H(X)= lim — Z plrr = X1,...,2n = Xp)loggp(xr = Xq, .. xn = X)) . (2:3)

In its most general form the entropy rate can be quite hard to determine. However, for special, but still

physically relevant cases, the definition can be simplified considerably.

A stochastic process is called stationary if any subset of the sequence of random variables it is invariant

under time shift, that is

p(an =T1y.-. 7X’rzk = .T,'k) = p(anJrl =T1y.-. 7Xnk+l = a:k) . (24)
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for all k,l-s and n1 < ng < --- < ng. In physics, such stationary processes typically arise as solutions of

time independent differential equations. A quantity related to the entropy rate can be defined as:

H'(X)= lim H (X,|Xn_1,...,X1) . (2:5)

n—o0

It can be proven for stationary processes [141] that if the latter limit exists, then the limit giving the
entropy rate (2:2)) also exists and H'(X) = H(X'). Thus, for time stationary processes Eq. (2:5)) can be

used to compute the entropy rate.

A Markov chain is a stochastic process satisfying
P(Xiv1 = 21| Xi = 25) = p(Xig1 = 21| Xs = 2, Xy = w1, ..., X1 = 21), (2:6)

i.e. the next random variable of the process only depends on the current random variable — the system
is memoryless. Since X;11 only depends on the current random variable X;, we can call it the state of
the system at time ¢. The connection between two consecutive states can be described by a transition

matrix
P = p(Xip1 = jIXi = k), (2:7)
which is a stochastic matrix by construction

ZP” Zp Xi1=jlXi=k) =1. (2:8)

If a Markov chain is described by a single transition matrix P, it is called time-homogeneous.

Let us calculate the partial entropy rate (i.e. Eq. (2:2)) evaluated for finite n-s)
1
H(n,X)=—-H(Xp,...,X1) (2:9)
n

for time-homogeneous Markov chains.

1 n
H(n, X) ZH XelXpo1,..., X1) +H(X1)] = [ H(Xp|Xp—1) + H(X))
k=2 k=2
n—1 1
= H(Xp|Xn-1)+—H(Xy). (2:10)
n n
Thus, the entropy rate is given as
H(X)= lim H(n,X) = hrn H(X,|Xn-1) = hrn H(X,| Xn-1,...,X1) = H(X). (2:11)

n—oo
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Hence, if either H(X) or H'(X) exists then the other exists, too. Consequently, one can calculate the
entropy rate of time-homogeneous Markov chains by using Eq. (2:5]).
A Markov chain is irreducible if all states are reached in finite time from any initial states. An

irreducible and aperiodic stationary Markov chain has a unique stationary (asymptotic) state:
uP = p. (2:12)

Note that in information theory the stochastic matrices are the transpose of the stochastic matrices used
in statistical physics, that is the unique stationary distribution is a left eigenvector with eigenvalue one.
One can see, that the entropy rate of irreducible time-homogeneous Markov chains can be calculated as
H(X) = lim H(Xn|Xp-1) =~ Z 11:P;j logy Py . (2:13)

Z7j
In the following we review some basic textbook examples to give a better view on the concept of entropy

rate.

2.2. Examples

The first example of the entropy rate is the one leading back to the Shannon entropy. Let us investigate
the entropy rate of a stochastic process consisting of a sequence of i.i.d. random variables. In terms of the
joint probability distribution: p(X1 = 21, X2 = z9,..., X, = ) = p(X1 = 21)p(X1 = z2) - - p(X1 =
z). Employing the definition of Eq.

H(x) = Tim %H(Xl,Xg,...,Xn) ~ lim %H(Xl) — H(XY). (2:14)
n
This is where we have started: The entropy growth (entropy rate) of the sequence of i.i.d. random
variables per new random variable is constant, and is given by the Shannon entropy of a single random
variable.
The next typical textbook example is the random walk on a weighted simple graph. A weight W ;
between vertices i and j is proportional to the probability that the walker passes through it. First, a

stochastic matrix must be defined using the weights:

Wi

Py = e
’ ZkWik

(2:15)

We again note that this matrix is the transpose of the stochastic matrices used in physics. Next, a

stationary distribution u satisfying uP = p must be determined. We will assume that this distribution
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is unique. Then, by using Eq. the entropy rate can be calculated.

It is easy to see that in some cases the entropy rate can be calculated in a more straightforward manner
using other symmetries of the system. Let us consider the unbiased one-dimensional discrete time classical
walk. In this model, from every position, the particle will hop to the left or to the right with probability
1/2. Since the system is infinite, the method we have described above is not straightforward to follow.
However, one can see that the translational invariance of the system helps us: in terms of the stochastic
process, it is wiser to encode the differences of subsequent positions (+1) rather than the actual discrete

positions. Exploiting this, we can easily derive the corresponding stochastic matrix
P=- . 2:16
; (216)
It is easy to see that this stochastic process has the entropy rate of 1 bit. Alternatively, one could argue

that the random drive of an unbiased homogeneous discrete time classical walk is a toss of a fair coin.

Consequently the entropy rate of the walk is the same as the coin toss, thus 1 bit.



Chapter 3

Asymptotics of random unitary operations

3.1. Random unitary evolution of quantum Markov chains

Quantum operations represent a versatile approach to describe general time evolution of quantum
states living on a Hilbert space H. That is, they can describe open system time evolution (decoherence,
dephasing, decay through environmental noise) and also can include measurements. A common way
to mathematically specify a quantum operation M : B(H) — B(H) is through the so-called Kraus

representation:
Mip) =3 AipAl (3:1)
where

doala <1 (3:2)

7

By B(H) we denote the space of bounded operators acting on the Hilbert space . Note that such
evolution of quantum states happens without any memories, thus it describes a quantum Markov chain:
a quantum evolution, where the next state depends only on the previous. These quantum operations
are widely used in various fields of quantum information theory, e.g. describing quantum communication
channels, entanglement witnesses or probabilistic cloning. The most notable property of such operations
is the complete positivity, .e. the joined density operator of the system in question with any environment

(ancilla) must remain positive under the quantum operation.

A special case of quantum operations is the random unitary operation (RUO map) [138-140]. RUO
maps describe a norm (trace) preserving open system time evolution: from a set of unitaries some
inherently classical random process chooses a single unitary which evolves the system. Since the inherent
random nature of the process, the expected outcome is an incoherent mixture of the states corresponding
to all possible selections weighted with the probability of choosing the given unitary. Described formally,

RUO maps are given as:
R(p) =Y _pilipU], (3:3)

where ), p; = 1. It is straightforward to see that RUO maps are trace preserving and their Kraus
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operators can be defined as A; = /p;U;.

RUO maps are quite useful to describe the open evolution of quantum states where some unpredictable
classical process is present. For example, one can imagine the random interaction of quantum particles
(gas) in a box [I38]: the collision of particles is described by a unitary, however the particles suffer

frequent and unpredictable collisions. Thus their time evolution is best described by a RUO map.

3.2. Properties and asymptotics of RUO maps

In this section we review the most important properties of, and the asymptotic method for RUO maps
[138-140] on which we will later rely. By construction RUO maps incoherently mix different quantum
states. When one considers a time evolution driven by a single RUO map, the purity of the quantum
state cannot increase. Therefore, the von Neumann entropy of subsequent states cannot decrease. In
finite systems the maximally mixed state (which is proportional to the identity operator) represents a
lower bound for purity and an upper bound for the von Neumann entropy. Consequently, under the

repeated application of a RUO map, asymptotically a set of isentropic quantum states is achievedlﬂ

Thus, any quantum state p,s from this set satisfies:

S (pas) =S (R (pas)) ) (34)

where S is the von Neumann entropy. Employing the definition of Eq. (3:3]) and also the property that

the von Neumann entropy does not change under unitary operations we get, that:

Zpis <UipasUZ'T) = S(pas) =S (R (pas)) =S <ZpiUipasUz‘T> . (35>

Let us use the concavity of the von Neumann entropy .S; which says that the entropy of a mixture is

greater than or equal to the entropy of the parts:
S(prp1 +p2p2 + -+ + papn) > p1S(p1) +p2S(p2) + -+ paS(pn) - (3:6)
Here, equality only holds when all p;-s are the same. Therefore, in Eq. (3:5]) all UipaSU;[ must be equal:

UipasU; = UjpasU]  for alli, js. (3:7)

4 This entropic argument is already known to be a suitable tool for finding asymptotics of open systems [173].
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Consequently, any quantum state pgs from the set of asymptotic states must evolve unitarily:
R(pas) = UipasUZ-T for alli-s. (3:8)

The importance of this observation is unquestionable: Unitary time evolutions are normal, i.e. they can
be diagonalized by unitary operators. We employ this property to determine the asymptotic subspace
of RUO maps. We note that, however, the total RUO map R is usually not normal: [R,Rf] # 0, thus
cannot be diagonalized by unitaries.

Let us formally diagonalize the asymptotic subspace. The eigenvectors found during the diagonaliza-

tion are operators (X) satisfying
U; XUl = AX  for alli-s, with |\ = 1. (3:9)

We call such X operators attractors. We note that Eq. (3:9) determines both X and the corresponding
A eigenvalue of unit magnitudﬂ. As attractors are eigenvectors in the asymptotic subspace, they also
span this space and form an orthonormal basis if they are orthonormalized through the Hilbert-Schmidt

scalar product:

Tr (X,X]) =5 (3:10)
We call this asymptotic subspace

A = Span ({X;}) (3:11)

attractor space. We note that there is a trivial attractor which is always available (i.e. satisfies (3:9)),

that is proportional to identity:

7 =

I, 3:12
dim/[ ( )

which is due to the construction of RUO maps: RUO maps are unital. However, this observation has an

immediate consequence. All other attractors forming the asymptotic subspace basis X; are of zero trace

1

dim/

T (2x]) = T (x]) =0, (3:13)

thus are not necessarily valid density matrices. In other words, the convex space of all possible physical

asymptotic density operators is a smaller subspace in the linear attractor space.

5 All X eigenvalues in the asymptotic subspace are of unit magnitude, since the asymptotic subspace evolves unitarily (13:8))-
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Finally, the attractors can be used to give the asymptotic evolution of RUO maps as

pas(t>1)= Y ANX; - Tr (p(o)Xj) . (3:14)
i A=1

Note that the last equation is simply a reformulation of the projector expansion. We stress that this
expression holds true only if attractors X; form an orthonormal basis according to . Another
interesting property of the last formula is that it is independent of the probabilities p; forming the RUO
map (c¢f. Eq. ), as long as 0 < p; < 1 for all é-s. That is, the asymptotics are determined only by
the set of unitaries U;: The selection of p;-s merely scales and affects the initial dynamics. We would also
like to bring focus on the appearance of the unit magnitude eigenvalues \ in Eq. : They indicate
that the asymptotic dynamics could possibly contain not just stationary states but also periodic and

quasi-periodic limit cycles.

In summary, the asymptotic dynamics of RUO maps are determined in the following way: First, one
should find the subspace of attractors X;-s and the corresponding unit magnitude eigenvalues A using Eq.
(3:9). Next, by using the Hilbert-Schmidt scalar product of Eq. one constructs an orthonormal
basis. Lastly, by employing Eq. these attractors can be used to determine asymptotic dynamics

of the RUO map with respect to an initial state p(0).

3.3. Example

In this section we illustrate RUO maps and the asymptotic method reviewed above through a simplistic
example. Our model consists of a pair of spin—% particles in magnetic field that are allowed to collide. We
assume that due to a 8 magnetic field in the z direction a single spin undergoes the following rotation
during a unit of time:

S(8) = exp (—ifio) = | TP " (3:15)
0 exp (if)

We assume that the particles are far away from each other (weakly interacting) most of the time, thus

they are not coupled to each other. Consequently, their evolution is independent:
S12=5S(B) @ S(B). (3:16)

Now, let us consider the following collision model. We assume that during a unit time step, there is a

small probability p, that the two particles will collide, in which case they exchange their quantum states
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through a swap operation:

1000

0010
C= . (3:17)
0100

0001

We assume that the particles are far from each other most of the time, thus the probability of collision

is small, and we neglect the probability that multiple collisions can happen during a unit step of time.

Let us build the RUO of the model using the building blocks given above. First, with probability

1 — p the particles evolve without any disturbance
Uy =851 withpy=1-—p. (3:18)
Next, with probability p the particles collide during a unit step of time. That is described by:
Uy =CS12 with ps =p. (3:19)

We note that the exact time of the collision during a single time step is not important since the swap

operation commutes with the magnetic precession unitary, i.e.
S,CSE = sy, . (3:20)
Finally, the RUO R is given by
R()=(1-p)Si2() S, +pCSiy () SI,CT. (3:21)

Now, we find the asymptotic dynamics by finding the attractors X and the corresponding eigenvalues of

unit magnitude using Eq. (3:9)).

Since this is a 4 x 4 problem it can be explicitly solved by hand without difficulty. The attractors
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spanning the asymptotic space A has the closed form:
.
1000 0000
0000 0000
1= 2=
0000 0000
0000 0001 )
with A = 1 (3:22)
0000 0000
x L [0100 X L, 0010
3= > 4=
210010 10100
0000 0000
Vg
corresponding to stationary asymptotics;
0110 0000
v , | 0000 v L, 0001 . (—2if)
1= —F= 92 = —= W1 = exp(—41?
V210000 210001
0000 0000/
Y) = 1T . .
with A = exp (2i3) (3:23)
Yy =Y,
and
0001
0000
Zy = with A = exp (—4if3)
0000
0000
2} =z} } with A = exp (i) (3:24)

which are responsible for limit cycles. From these attractors the asymptotics are readily determined via

Eq. (3:14).

Let us show the asymptotics for a class of initial states. We prepare a separable state where both of

our spins are pointing in the x direction:

1 1
POZE(I‘*‘aam)@i(I‘FbUz):*

1 b a ab
1 b 1 ab «a
a ab 1 b
ab a b 1

(3:25)
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where a,b € [—1..1]. By employing Eq. (3:14) the asymptotic density operator is readily constructed:

1 T(a+b)e 2P L(a+b)e 2P abe 4Bt
pas(t > 1) = 1 3 (a+b) e 1 ab L(a+b)e 2Pt 526)
4 % (a+b) e2ibt ab 1 % (a+10) e~ 2Bt

abetiBt 2(a+b)e?Pt L(a+0b)e¥! 1

Note that the magnetic precession can still be observed on the off-diagonal elements of the density
operator despite the decoherence effect of collisions — thus, the asymptotic state of the spins has a limit
cycle, controlled by the external magnetic field.

These small discrete time weakly interacting systems are important models used for studying the
thermalization and other thermodynamical phenomena and quantities in quantum mechanical systems
[174] 175]. The asymptotic method reviewed here is particularly suitable for such studies. We will also

see later in this thesis that this approach is also very fruitful in percolation quantum walks.






Chapter 4

Walks on percolation graphs

4.1. Definition and some properties of percolation graphs

The word percolation usually refers to the movement of fluid through a porous material. A common
way to describe this motion is by a random walk on a graph with randomly broken connections, that
is missing edges or vertices [128] 129]. Such graphs are called percolation graphs. There are two major
approaches to the description of a percolation graph. According to the first approach, all edges have
the identical 1 — p probability to be broken independently from each other, where broken means, that
they are missing (erased) from the graph G(V, E). This model is called bond (edge) percolation since
the imperfectness affects the edges. In the second approach the graph vertices can be missing with the
same 1 — p probability, independently from each other. Naturally, when a vertex of a graph is erased
all connecting edges are also erased . This approach is called site percolation. Both the bond and site
percolation are useful for modeling natural processes, e.g. the filtering of liquids, cracks in wood, and

even the robustness of man-made infrastructure — computer and electrical networks.

One of the most interesting properties of percolation graphs is the phase transition they can exhibit:
Someone can ask the question wether in an infinite graph or lattice an infinite cluster (connected com-
ponent) exists. The probability of the occurrence of such a cluster is either 0 or 1 due to Kolmogorov’s
zero-one law. It is straightforward to see that the existence of the cluster depends on the value of p.
Under a critical p. the probability of an infinite cluster is zero, while above the critical threshold the
probability jumps to one. We illustrate this property on FIG. Determining the critical probability is
quite hard mathematically, even for very simple regular lattices — most of the known results up to date
are numerical. To give an example, the bond percolation threshold for a square lattice is exactly 1/2,
however the exact value of the site percolation threshold is yet to be found analytically: its approximate

value is p, ~ 0.5927 [176], [177].

The mathematical properties of percolation graphs are strongly connected with the behavior of walks
on them. For example the probability of a walker passing through an infinite percolation graph (thus
actually performing percolation) corresponds to the probability of the existence of an infinite cluster.
Moreover, discrete time walkers provide a natural time scale — the duration of a unit step — which
allows one to consider a dynamically changing percolation graph. In this case the probability p describes
the probability that an edge (vertex) is present on the graph during unit time step. Before (or after)

every single step of the walker, one randomly draws a new percolation graph (a new configuration of the
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Figure 4:1. Two bond percolation square lattices. The plot on fthe left shows a lattice where the probability
of each edge being present is identical, independent from each other and its value is p = 0.6. The plot on the
right shows a lattice where this probability is p = 0.3. In square lattices the critical bond percolation threshold
is p. = 0.5, i.e. above this threshold the probability of finding an infinite connected cluster is 1, while below the
threshold, this probability is zero. We illustrate this property by showing that on the plot on the left there is a
path connecting the upper left corner with the lower right corner, whereas on the plot on the right there is no
path between them.

edges). This generalized approach is called dynamical percolation [130).

4.2. Overview of quantum walks on percolation graphs

Classical walks on percolation graphs are suitable for modeling systems where random errors affect
the classical transport. On the other hand, transport can follow the rules of quantum mechanics. In this
case quantum walks on percolation graphs might give a suitable description. Since quantum walks have
an inherently deterministic nature, the effect of the random percolation inevitably disturbs the coherence
of the walker. Moreover, even just to describe quantum walks on percolation graphs is rather non-trivial.
In this section we briefly review the most influential works from the literature of quantum walks on

percolation graphs.

The first work on quantum walks on graphs with percolation is, to our knowledge, by Romanelli et al.
[131]. The authors investigated the one-dimensional discrete time Hadamard quantum walk (see Section
1.1.1)) on the line under the decoherence effect of dynamical percolation — which they call broken links.
Their model has a single parameter corresponding to errors of the graph: p, which is the probability that

a link between any two adjacent sites is missing during a unit time step. In this model the time evolution



43

is kept unitary:

Uty =vdui...gd (4:1)
with
Uk =Sk -(IpC) (4:2)

where Sk is the step operator on the percolation line, i.e. it realizes a step for a concrete configuration

K C FE of the edges. An important question is to define Sk unitarily. The authors have given

Sc= Y. le+LR)x,Rl+ > |r—1,L)z L+

(z,z+1)eK (z,z—1)eK
> Ju, L)@ R+ Y xR, L. (4:3)
(z,x+1)gK (z,z—1)¢K

that is, the walker facing a broken edge (i.e. not in K) has its internal coin state reflected without
changing position. Although between steps the configuration of the underlying graph might change,
statistical averaging is not defined in the model, thus, the effect of broken links is considered as a
unitary noise. The question the authors have addressed was how the dynamically changing graph affects
the variance (spreading) of the quantum walk. They found numerically that a transition between the
two-peaked quantum (ballistically spreading) and classical (diffusively spreading) Gaussian distributions

happens after a critical number of steps, which can be expressed as

1
2

tc (44)

A simple argument behind this result can be given as follows: At the beginning, the wave-function
is confined to a small region. Consequently, it is not disturbed by the dynamical percolation of the
graph, thus, the walk can spread ballistically. At time ¢, the walk covers ¢/ V2 sites, and about pt/ V2
links are broken in that area. As the proportion of broken links grows to the order of 1, the disturbance
becomes relevant, and the quantum walk will lose its quadratic speedup, reverting to the classical diffusive
spreading. This behavior is illustrated in FIG. [£:2] The diffusion coefficient is estimated to be D ~
0.4(1;fp) by linear regression. The authors also determined a critical value for p which is approximately
0.44, when the diffusion coefficient is 1/2, which corresponds to that of the classical unbiased random

walk.

The two-dimensional extension of the above dynamical percolation model was first considered by

Oliveira et al. [I32]. The two-dimensional Hadamard, Grover and Fourier walks (cf. Section [1.1.2)) were
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Figure 4:2. Dynamical percolation as unitary noise in a one-dimensional quantum walk. The position distribution
P, of a quantum walk on the percolation line is shown, for p = 0.01 (which is the probability that a given edge
is missing) at two different time instances. For small number of steps, the walk is only slightly affected by the
decoherence effect of the percolation, albeit the spreading is still ballistic at ¢ = 50, as seen in the upper plot. After
the critical number of steps [see Eq.]7 the decoherence becomes significant and the walker spreads diffusively,
exhibiting a Gaussian distribution as illustrated in the lower plot which corresponds to t = 1000. The distributions
corresponding to the undisturbed (unitary) case of p = 0 are shown in the background. This figure is taken from
[131].

studied in terms of the diffusion coefficient. The authors showed that if the percolation probabilities can
be tuned independently on the diagonal line, the walker can become confined to that one-dimensional
region. This confinement can lead to increased coherence (and thus, ballistic spreading). Hence, at the
extreme cases of low p < 1 and high p ~ 1 the system behaves as a ballistically spreading coherent wave,

whereas in the regime in-between the decoherence is significant and the walk is diffusive.

Abal et al. [I33] investigated the one-dimensional infinite line with broken links using a single-

parameter coin class

cosf  sinf
Uc = (4:5)

sinf —cosd
They have introduced a translation-invariant type of the dynamical percolation: With probability p? the
walker stays, with probability (1 — p)p the walker is not displaced to the left (or to the right). Finally,

with probability (1 — p)?2, the walker is free to move (performs an undisturbed step). The translational

invariance allowed the authors to use Fourier transformation to analyze the system. The dependence of
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the diffusion coefficient on the parameter of the coin was determined numerically.

In the work of Leung et al., [I34] the one-dimensional lattice with dynamically broken links is invest-

igated using the statistical mixture of the unitary trajectories.

o) = 3 peUk(0) (U})' (1:6)
KeE

Their results about the one-dimensional system agree with the results of Romanelli et al reviewed above.
Furthermore, they claimed that the transition from ballistic to diffusive motion happens slowly in certain
cases, thus the quantum speedup could still be exploited for small number of steps. For larger systems
they found that the spreading is diffusive. However, the pre-factor of the spreading of the quantum walk
can be still higher than its classical counterpart, i.e. its motion is diffusive but faster. The authors also
studied the effect of random phases on spreading. In the same work the Grover walk on a two-dimensional
Cartesian lattice (¢f. Section with static bond and the site percolation was analyzed using the
same statistical mixing as in . The authors numerically determined the spreading (variance) of the
system. Their results show that below the critical bond (site) percolation threshold p ~ 0.5 (p ~ 0.6) the
quantum walk — like a classical walk — can not spread. However, above the threshold the spreading of
the system shows a fractional scaling, i.e. sub-diffusive motion. This is illustrated on Fig. In the
limit when small number of links are broken the quantum walk surpasses the classical diffusive spreading
and exhibits sub-ballistic fractional spreading. The authors employed mostly numerical simulations to
obtain their results. We note that since the number of configurations grows exponentially in Eq.

these simulations become exponentially hard to compute.

In a related article Lovett et al. [135] numerically investigated percolation graphs as a factor affecting
the efficiency of a quantum walk based search (cf. Section M) on two- and three-dimensional lattices.
They found that below the percolation threshold the search fails naturally, since with high probability
the graph is not connected. Consequently, the probability amplitude cannot be concentrated (interfere
constructively) on the marked vertices. However, the authors found that just above the critical percolation
threshold the walk exhibits the speed, O(NN), of a classical search. The reason behind this effect is that in
the percolation graph with parameter around the percolation threshold the remaining connected structure
resembles a one-dimensional graph. Furthermore, above this regime the speed of search rapidly converges
to the quantum valueﬁ Surprisingly, the quantum scaling is reached around p = 0.7 — where p is the

probability of an edge being in the graph.

Marquezino et al. [1306] investigated discrete time quantum walk on an n-dimensional hypercube. The

% The quantum walk based search needs O(y/N log N) oracle queries in two-dimensions, and O(v/N) queries in three or
more dimensions [47H50].
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Figure 4:3. Fractional scaling exponent « for two-dimensional percolation lattices derived from numerical data
for t = 100 to 140 steps. The inset shows more detail for 0.8 < p < 1.0 in case of random phases, and using
different lower cut-off-s. This figure is taken from [134].

average limiting distribution

o T—1
m(x) = lim — ; P(x,t),
was considered in their work, where P(x,t) is the position distribution of the walk at time ¢. The authors
employed the dynamical percolation (broken links) as a type of unitary noise — i.e. no averaging over
different percolation lattices was performed (cf. Eq. ) In the unperturbed (p = 0, no broken links)
Grover operator driven case the average limiting distribution is not necessarily uniform. It depends on
the initial state. However, in the percolation case even a small noise will cause the system to reach
the uniform limiting position distribution. The authors used mixing time to characterize the speed of
convergence. They found that it depends on the probability p, and the numerical results imply that the
fastest mixing happens around p. = 0.1. Consequently, even a small decoherence can aid the mixing

procedure.

In continuous time quantum walks (CTQWs), the static percolation (where the disorder does not
change through the evolution) was considered in the works of Miilken et al. [40 41] and Anishchenko et
al. [44]. Also, the case of dynamical percolation with CTQWs has been studied by Darézs et al. [137].
The authors showed that the dynamical percolation acts as a rescaling of time evolution when the changes

occur with a high enough frequency. The return probability was also investigated in detail. It is shown
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that although the system suffers a strong decoherence due to the rapid changes of the underlying lattice,
the return probability still shows an oscillatory behavior in time, which is a characteristic property of

the undisturbed quantum evolution.
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Chapter 5
Asymptotics of quantum walks on percolation graphs

Discrete time quantum walks (c¢f. Section obey unitary dynamics by design. Thus, they are
closed quantum systems. Percolation (See Chapter , that is the removal of edges from the underlying
graph controlled by some classically random process, naturally makes this time evolution open. Recently,
these kind of systems gained some interest (See Sec. , but most actual results are either numerical or
phenomenological, mostly due to the “size" of the problem: A quantum walk spread on a bigger graph
means a bigger territory for percolation, and the number of actual percolation graphs (configurations)
grows exponentially with the size of the graph. Thus, even purely numerical results are hard to obtain
due to the required computational power.

This section is devoted to study general discrete quantum walks on finite graphs (lattices) under
the decoherence effects of dynamical percolation. Employing the asymptotic theory of RUO maps (cf.
Chapter we present a method for finding the asymptotics of such open walks, which is based on
separation of time evolution. We also show that on regular graphs the superoperator corresponding to
the open system evolution can be constructed using polynomial resources.

This chapter is organized as follows: First, in section [5.1] we define the model of discrete time quantum
walks on percolation graphs. Next, we formally solve the asymptotics of this model and also reveal a
polynomial construction that aids the numerical studies. In section we present a general analytical
method for obtaining the asymptotics. Following that, we show that on regular lattices the presented

method becomes considerably simpler. Finally, we draw some conclusions.

5.1. Definitions

We repeat (see section [1.1]) that discrete time (coined) quantum walks are described on a composite

Hilbert space
H=HpHc, (5:1)

where H p is the position space corresponding to the vertices of some underlying graph or lattice G(V, F),
whereas H¢ is the coin space corresponding to the directions of nearest neighbor hops. The single step
of the closed time evolution is given by a unitary operation (See Eq. ) which corresponds to two
essential phases. First, the internal coin degree of freedom of the particle is rotated unitarily — this

corresponds to the coin toss. Second, according to this coin state, the particle is coherently shifted to its
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new position.

Suppose that due to some errors in the hopping mechanism the particle cannot pass through an edge
during a unit time interval (discrete step). We consider such an edge broken during that unit time step.
Naturally, otherwise the particle is free to pass through the same edge. We call such an edge perfect. We
assign a probability py to each edge ¢ € E of the graph representing the probability of the edge being
perfect during a unit time step. In this way 1 — py is the probability of the edge being broken during
the same unit time step. We assume that all these events are independent. A natural way to describe a
system with such imperfections is to introduce dynamical percolation into the underlying graph: Before
every discrete time step we choose an edge configuration K C F randomly (according to the probabilities
pe), which describes the failures in the hopping mechanism. Broken edges are simply missing from the

percolation graph, ¢.e. they are not in configuration K.

We now give the time evolution of such systems. Through the dynamical percolation (randomly
changing edge configuration) classical randomness enters the model. Thus, we describe the state of the
system using density operator formalism. A unit step of the stochastic time evolution reflects our lack of
knowledge about the actual (random) edge configuration K , that is a unit step is an incoherent mixture

of different coherent time evolutions:
pn+1) = ZWKU;Cp(n)U,TC = ®(p(n)), (5:2)
Kc

where ® is a linear superoperator. i represents the probability that a given edge configuration K occurs:

WK:{HPZ} [Ta-po¢- (5:3)

ek

By Ui we denote the unitary time evolution operator of the QW on the percolation graph with config-
uration /C. The superoperator ® by construction belongs to the class of random unitary operations —

RUO maps (See Chapter [3)).

We define the unitary Uy, that depends on the configuration I C F, in the following. Whenever the
particle faces a broken (missing) edge, which it cannot pass, it stays at its current place, but suffers a
reflection in its internal coin degree of freedom. We describe this reflection by an off-diagonal unitary
matrix R. Naturally, the walker can pass through a perfect edge like in the case of the time evolution of

a closed system. The formal mathematical definition is given as:

Uk =Sk(Ip®C), (5:4)
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Figure 5:1. Illustration of a discrete time quantum walk on a one-dimensional graph with dynamical percolation.
In the figure we show a single possible unitary trajectory of the system — time is labeled by n. The quantum
state of the walk is pure in every step. We stress that the lack of knowledge about the actual edge configuration
(percolation graph) makes the system open, so the time evolution is not unitary. The arrows show the directions
where the wave packet can spread (hop) in the next step, while the loops correspond to the case when the wave
packet cannot pass through a missing (broken) edge — as a consequence its internal coin degree of freedom will
suffer a reflection.

where

Sc= Y, ledp@lpeldelcde + Y. |x)plp @ |doldoR, (5:5)
(z,2@c)€K (z,2®c) 2K

is the step operator on configuration K C E. The first term describes the coin dependent shift (hopping)
when the edge is perfect ( c¢f. Eq. ): with = @ ¢ we denote the nearest neighbor of x in the direction
c. The second term corresponds to the case when the actual edge is broken: the internal coin degree
of freedom suffers a reflection by operator R but the particle stays at its current place. C denotes the
unitary coin operator. We note that in equation operator Ip ® C' is spatially homogeneous, but Sk
breaks any translational invariance. We illustrate a single unitary trajectory of this system in FIG.
To summarize, the discrete evolution of the quantum walker on a dynamical percolation graph is
described by repeated application of the single step ® of Eq. . After the n-th step the walker, that

was initially at the state pg, will be found in

p(n) = 8" (po). (5:6)

In the following we give the formal solution for the asymptotics.

5.2. Formal solution and a polynomial construction

Both the unitary and the percolative coined quantum walks can be viewed as repeated iterations

of one single step. In the case of the percolative quantum walk, there is a random choice of broken



54 5.2  Formal solution and a polynomial construction

edges in each step. For such an open system, each step can be different in a certain realization of the
process, nevertheless statistically speaking one can view the process as an iteration of the same step on the
density operator of the system. This fact is expressed by the repeated application of the time-independent
superoperator introduced in the previous section. The analysis of the dynamics for a percolative quantum
walk is in general more involving than the analysis of the corresponding unperturbed unitary walk. In the
latter case, the discrete evolution can be described by the iteration of a single unitary operator. There are
two advantages of having a unitary generator at hand. First, it can be diagonalized and, second, we can
always choose an orthonormal basis formed by its eigenvectors. In contrast, for the open system we have
a generator ® like Equation , a superoperator acting on density operators. Such a superoperator
is not necessarily normal, i.e. it does not commute with its adjoint operator, therefore one may not be
able to simply diagonalize it in some orthonormal basis. However, one can still find the solution for the
asymptotic behaviour of an iterated random unitary dynamics. The theoretical background is reviewed

in Chapter

The key aspect is to find the attractor space A ( See Eq. (3:11]) ) which is spanned by attractors X ;
( ¢f. Eq. (3:9) ) satisfying

UcXyi = \XaiUc VKCE, [N=1. (5:7)

Then, the asymptotic dynamics can be readily determined with the help of the following formula ( cf.

Eq.(3:14) )

pas(n) = ®"(pg) = Z N' Xy, - Tr (p0X17i) for n>1. (5:8)

IN=1,i
Here the phases of the A eigenvalues of unit magnitude are responsible for the appearance of asymptotic
dynamics which can be stationary asymptotics, periodic or quasi-periodic limit cycles. We note that in

order for the latter formula to hold true, the orthonormality of attractors ( c¢f. Eq.(3:10]) ) is needed:
Tr <X>\7iX1/7j) = 5/\)\/(51'7]' . (529)

It is important to stress that the attractors given in Eq. do not depend on the probability distribution
{7k}, thus, the asymptotic behavior of dynamics of Eq. generated by RUO maps is insensitive to
the actual p, probabilities of errors, except in the extremal cases when some p, = 1 or 0. As we
discussed in Chapter [f] in percolative systems sometimes there exists a critical value for the probability,
at which a phase transition occurs in the system. Here, a direct consequence of the insensitivity of the

asymptotic dynamics to the particular value of the parameter is that the asymptotic dynamics cannot
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reflect signatures of such a phase transitions.

Although the solution is formally given, determining the attractor space matrices through Eq. is
a hard task. In fact, the number of configurations K depends exponentially on the number of edges |E]|,
which is on regular lattices, proportional to the number of vertices N = |V/|. This last number is usually
called the size of the system. This exponential dependence makes brute force numerical studies inefficient
for larger systems. Moreover, the construction of ® superoperator that we need to study the exact short
time dynamics also requires resources that scale exponentially with the size of the system. However,
we show that for regular graphs the problem of finding a numerical solution can be handled using only

polynomial many resources. We rewrite Eq. (5:8) in terms of matrix elements X;’j = (s, ¢|X|t,d). Thus,

prot+1)= > prb) | Y mx(p) Ul Uit | (5:10)
a,b,q,r KCE

The second sum is taken over all possible configurations K C E. This latter summation is the one
with exponential dependence on the size of the system (for regular lattices). However, by studying the
elements of Si one can see that only elements connecting neighboring vertices (a vertex is considered to
be its own neighbor) can be nonzero. Thus, Sk is a sparse matrix. Consequently, the expensive second
sum can be taken only over edges between neighboring sets of vertices £, thus C £ C E. On a d-regular
graph every vertex has d neighbors, thus a single run of the second sum, restricted to the set £, contains
only 22¢ = 49 additions in the worst case. As the first summation is O(N?) (polynomial) with respect to
the number of vertices, the total computation cost is reduced to the polynomial regime with respect to
N. One can repeat the same line of thoughts to see that the superoperator ® is also a sparse operator,
and the cost of its construction by can be reduced to the polynomial regime as well. During our studies
we performed numerical tests to confirm our analytical results and to generate figures, and we found a

great use of this result.

In the following we move on to give a general analytic method for determining the asymptotics of a

quantum walk on dynamical percolation lattices.

5.3. General method

In general, determining the attractor space is a demanding task. However, it can be simplified consid-
erably with the use of symmetries (e.g. translation invariance) of the walk. We will use the translation
invariance of the coin operator to separate the definition of the attractor space matrices of Eq. (5:7)) into

a coin and a graph dependent part. By using the time evolution definition of Eq. (5:4)), Eq. (5:7) takes
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the form

Sic (IP®C)X<1P®0T) SL=AX, (5:11)
which we immediately rewrite into

ASLX Sk = (Ip® C) X (Ip ® CT) , (5:12)

where |A| = 1. This equation must be satisfied for all £ C E. A closer look at the latter formula reveals
that the right hand side does not depend on edge configurations and the left hand side does not depend
on the coin operator. Consequently, we can separate the equations collected in Eq. into two sets of
equations. The solution for the original problem should satisfy all the equations in these new collections,

simultaneously. First, if we apply Sy from the left and its adjoint from the right to Eq. we get
SkSL XSSk =X VK, KCE (5:13)
which we call the shift conditions. The second set consists of only equation
ASL XSk = (Ip @ C) X (Ip ® CT) , (5:14)

which must hold for a single given K’ C E. We note that in case of discrete time quantum walks the
coin operation is local ( ¢f. Eq. ). Also, the step operator Eq. on percolation lattices is local
on an isolated vertex. Consequently, the most straightforward configuration for Eq. is the empty
configuration X' = {}, i.e. when all edges are broken. In this case Eq. have the simple local form
of

(Ip® RC)X(Ip @ CTRT) = \X, (5:15)

which we call the coin condition. Using the coin block form of the operator X =} _, [s)(t|® X (1) one
can realize that equation (5:15)) is equivalent to the set of identical (local) coin block conditions

(RC)XEY(RC)T = Ax (&) (5:16)

for each coin block X (). (We intentionally use the notion “coin block" because each matrix X% is

defined on the coin Hilbert space Hc.) Employing the isomorphism (% |c,d) = (c| XV |d) we can
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turn Eq. (5:16) into an eigenvalue problem for the operator RC

(RC) ® (RC) x> = Ag>Y), (5:17)

Let us give some physical meaning for the equations (5:13)) and (5:16)). The shift conditions Eq. (5:13)

represent the underlying graph with the boundary conditions. Also, all attractors are contained in the
space that satisfies the shift condition. On the other hand the coin block conditions Eq. determine
the possible members of the attractor spectrum, which are the eigenvalues of the superoperator ® that
have a unit magnitude ( |A\| =1 ). Also, through the coin block conditions the internal coin structure of
attractors are given, and the actual attractors can be found in the space given by the shift conditions.
To summarize, we provided the following method. First, one should find a solution space spanned by
the shift conditions of Eq. . This solution space is naturally determined by the underlying graph
of the walk. Second, by employing the coin conditions (5:16|) one can determine the unit magnitude
eigenvalues A and also restrict the space that satisfies the shift conditions to the actual attractors. Lastly,
through Eq. the attractors can be orthonormalized to form an orthonormal basis, and by using Eq.
, the asymptotics are given readily. The presented method which is based on separation is generally
applicable to general percolative quantum walks, with the only restriction that the coin operator has to
be translation-invariant and local. This method is one of our main results. In the following we further

simplify our method and illustrate it on a family of one-dimensional graphs.

5.4. Shift conditions on regular lattices

In the previous section we gave a general method for finding the asymptotics for percolative discrete
time quantum walks. The given process can be simplified even further by studying regular, translation-
invariant graphs (lattices). The translational invariance allows us to study whole graph families, where
the number of lattice sites is not fixed, rather it is a parameter of the problem. In this section we
consider simple translation-invariant one-dimensional lattices, which are the linear graph (line) and the
circle graph (N-cycle), both consisting of N = |V| vertices. These graphs represent two physically relevant
situations: reflecting and periodic boundary conditions. We set the reflection operator R = o,. However,
we note that the simplifications presented here are valid for higher dimensional and more general lattices
too, since the only property we use is the translational invariance of the graph. We have chosen the
one-dimensional graphs for the purpose of giving a straightforward example.

In this section we will use the one-dimensional notation of Section [I.1.1} i.e. the positions on the
one-dimensional lattice are given by integers. In our case we consider non-negative integers to represent

the vertices of the graph. Coin states |L) and |R) are corresponding to steps to the left and to the right,
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respectively.

To begin with, we repeat the shift conditions of Eq. (5:13]) here:
SkSkXriSk S = X, VK, KCE. (5:18)

It is easy to see that L = K’ is a tautology, thus actual conditions (restrictions on the elements of X} ;)
are given only when the configurations are different. For the system under consideration Sk matrices
are always permutation matrices, thus for given configurations they define a one-to-one correspondence
between matrix elements. Moreover, we deal with walks that make only nearest neighbor steps. These
properties imply that a single matrix element determines three other matrix elements at most. We will
denote a matrix element of a matrix from the attractor space with

(s1,¢1|Xnils2,c0) = Wih . (5:19)

§2,C2

Naturally, we start with a matrix where all matrix elements are free parameters to chose. We now fix
a matrix element Wg’LL for further investigation. When p # ¢, the edges (p,p ® 1) and (¢,q ® 1) are
different. Thus, application of Eq. (5:18]) results in:

L _ yyp®LR _ ypp L _ ypp@LR .
Wor =Weerk =Wearn=Wor ™ - (5:20)

On the other hand, when p = ¢, the edges (p,p ® 1) and (¢,q ® 1) are the same and hence both indices

of the matrix element “feel" the same configuration (shifts). In this case:

L _ /p®LR .
WﬁL = 5@1,51- (5:21)

One can repeat the proccess shown above to determine all the shift conditions for the elements of
an attractor space matrix. Due to translation invariance of the underlying graph the conditions can be

summarized in a concise way:

s161,L s1,R s1,R _ s161,L .
Wsz@l,L - WSQ,R - WSQ@].,L - WSQ,R ’ (522>

when s1 # so is satisfied. If s1 = s9 = s, the following conditions must hold:

e1L R .
Wi =wef (5:23)
R ©L,L .
Wk =wighh. (5:24)

Furthermore, if s1(2)© (@)1 belongs to a reflecting boundary (in case of the linear graph), the correspond-
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ing equations must be omitted from the set of equations defined above. This omission gives the difference
between the reflecting and periodic boundary conditions. Note that position indices run through their
corresponding abstract spaces, i. e. s, 1, $o runs through the site labels of the underlying one-dimensional
graph. Again, note that shift conditions do not connect elements that have different coin labels at the
same position, i. e. shift conditions do not restrict the form of coin blocks available at a given position

— this is a common property for all shift conditions.

In summary, the abstract shift condition subspace determined by Eq. can be given by using
the equations , , and . The translational invariance of the operations allow for such
compression of solutions. The method can be applied to graphs with arbitrary number of vertices N = |V].
This allows for studying solutions which are out of the reach for the current numerical or experimental

techniques.

5.5. Conclusions

Discrete time quantum walks on dynamical percolation graphs are special cases of open systems.
Due to the exponential amount of computational resources needed to study such systems, finding proper
analytical tools is essential. In this chapter we presented a general analytical tool for giving the asymptotic

dynamics of quantum walks on finite graphs dynamically percolated graphs.

We first defined the random unitary operation (RUO) that gives the time evolution. This time
evolution can also be viewed as a superoperator which is linear with respect to the density operator.
For such superoperators the asymptotics can be determined through the construction of the so-called
attractor space. We have given a general method based on the separation of the equation for the time
evolution which formally gives the attractor space. This was done through two sets of equations called
the shift conditions and coin condition. The shift conditions correspond to the graph structure, while
the coin condition gives the coin structure of the attractors, and also determines the actual asymptotic
dynamics through the phases of eigenvalues. Thus, the asymptotic dynamics is determined by the coin
operator. This separation allows for studying whole classes of coins on the same graph in a straightforward
way, since only the coin conditions corresponding to different coins must be applied to the same space

determined by the shift conditions.

We also showed that on regular translational invariant graphs (lattices) the shift conditions can be
simplified considerably, giving a concise form to the conditions. This allows for studying whole families
of lattices where the number of vertices (the size of the system) is a free parameter, too. Through this,

even numerically unreachable graphs can be studied.

Although the computational power required for the brute force construction of the asymptotics or
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the superoperator for regular graphs is exponential in terms of the graph size, we showed that the
computational need can be reduced to the polynomial regime for regular graphs. The corresponding
polynomial construction is based on the observation that the time evolution operator of discrete time

quantum walks is a sparse matrix.



Chapter 6

Determining asymptotics through pure states

The asymptotics of time evolutions given by RUO maps are given through the search of the attractor
space (See Chapter . However, attractors are not restricted to proper density matrices. In fact, they
just span a linear attractor space in which the convex space of the actual asymptotically available density
operators reside. Consequently, attractors usually do not have an inmediate physical meaning, thus it
is hard to draw any physical properties of a system just given its attractor space. Naturally, one can
address this problem: Is it possible to construct attractors in a way that they have a direct physical

meaning? Is it possible to find some physically relevant part of the attractor space?

In this chapter we pursue the problem of giving an inmediate physical meaning to attractors. We
present a new, simpler method to give the asymptotics of RUO maps. This method is based on the
search of pure common eigenstates, which are the fixed points of dynamics with actual physical meaning.
Moreover, they can be found more easily in comparison with general attractors. The connection between
the general attractor space approach and the pure state ansatz is discussed. We also apply this method

on quantum walks with dynamical percolation.

This chapter is organized as follows. First, we present our ansatz based on finding pure fixed points of
the dynamics. Next, we employ the ansatz on the model of quantum walks with dynamical percolation
(which we described in the Chapter |5| ) to determine the asymptotics of the model. Finally, we draw

conclusions.

6.1. Pure state ansatz

The asymptotics of RUO maps (See Chapter. [3)) are given through finding the attractor space A ( See
Eq. ) which are spanned by attractors defined by Eq. . By construction these matrices are not
guaranteed to be proper density matrices. Consequently, the attractor space is an abstract linear space
containing the subspace of actual asymptotic density matrices. In this sense attractors do not necessarily

carry a direct physical meaning.

We would like to use the fact that attractor matrices X evolve unitarily in the asymptotic regime as
it is established by Eq. (3:9)). Let us consider pure states |¢)) which are eigenstates of all the possible
unitaries U; used in the construction of the superoperator (cf. (3:3)):

Uily) = aly)y  for alli-s. (6:1)
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We refer to these states simply as common eigenstates. We stress that a common eigenstate [1)) takes
the same « eigenvalue for all U; unitaries. Surprisingly, as we will show below, the procedure based on

finding these states can be very fruitful to construct a substantial part of the attractor space.

Such common eigenstates have an interesting property, namely they automatically form attractors as

U ) (|U] = aa* () (] = [) (] = Uy [) (|U (6:2)

for all 7,4'-s. Let us choose an orthonormal basis of all common eigenstates {|¢q. i)}, where index i refers
to possible degeneracies and « is the eigenvalue corresponding to |¢q ;). It is apparent that any linear

combination

Y= > Agjlda:)ds,l, (6:3)
QB*ZA7Z7‘7
with a fixed eigenvalue product a8* = A constitutes an attractor corresponding to eigenvalue A. Indeed,

such attractors by their construction satisfy defining equation (3:9), which we repeat here for a moment:
U; XU = AX  for alli-s, with [\ = 1. (6:4)

Interestingly, all these attractors satisfy even the stricter conditions (as it follows directly from the

construction)
Ui XUl = AX  for alli,i'"-s, with |\ = 1. (6:5)

We call these attractors p-attractors. In contrast with the condition on general attractors the latter
condition on p-attractors is more restrictive, because in this case X must be invariant under the
effect of any different pair of unitaries U; and Uy. Therefore, not all attractors can be constructed from
pure common eigenstates in general. For example the trivial attractor proportional to identity is not
a p-attractor, as it breaks the condition (apart from the case of a purely unitary time evolution).
Consequently, the attractor space must always contain the span of all p-attractors and identity, as a
minimal subspace. In fact, for certain RUO based evolutions this minimal subspace case is actually the
whole attractor space. In such case, the asymptotic time evolution simplifies considerably:
_Tr { p075}

p(n) = UrPpyP (UJ)n + P?ﬁ where n>1. (6:6)

Here, P is a projection into the subspace of common eigenstates, and P is its orthogonal complement

satisfying P+P = I. Let us discuss the meaning of for a moment. In the minimal subspace case the
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asymptotic state is an incoherent mixture of the common eigenstate subspace — evolving unitarily — and
the completely mixed state projected on the orthogonal complement of the common eigenstate subspace.
This formula also shows that the space spanned by common eigenstates is a decoherence free subspace.
Thus, we have given a way to find decoherence free subspaces in RUO time evolutions. Such protected
subspaces are always handy in quantum information, e.g. they can be employed for computation or

information storage purposes.

Even when the attractor space is not the span of the trivial attractor and p-attracors, the pure state
ansatz can aid the construction of the full attractor space. Practically speaking, even if there are some
nontrivial non-p-attractors, it is convenient to first construct all p-attractors using the pure common
eigenstates, which are naturally easy to calculate. Then, using the general method one can construct
and add the non-p-attractors to complete the whole attractor space — the key idea is to elaborate
the differences between and . Another aspect of the pure state ansatz is that pure common
eigenstates are much easier to calculate then regular attractor space matrices. In the following, we show
a case study by employing the pure state ansatz for the case of the one-dimensional percolation quantum

walks we studied in Chapter

6.2. Percolation quantum walks

First, we start the analysis with searching for common eigenstates. According to Equations (5:4)) and
(6:1) they are defined by equations

Sk (Ip®C)|Y) =alyp) foral CE. (6:7)
This formula can be separated into a coin condition with one chosen edge configuration
Sk(Ip @ C)) = ali) (6:8)
and the set of shift conditions
SkrSLp) = |¢)  for all K, K' C E. (6:9)

The most straightforward configuration for Eq. is the one with all edges broken K = {}, which

makes the coin condition local

(Ip @ RO)|¢) = aly) . (6:10)
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Expanding an arbitrary pure quantum state as |¢)) = |s) ® |9()) ¢ we can rewrite Eq. |D into the

set of local and equivalent eigenvalue equations
RO e = alp¥)c. (6:11)

Equations determine the possible candidates for eigenvalues « associated with common eigenstates
and also the general structure of internal coin states [)(*)). These internal coin states are then
bound to each other via shift conditions . This procedure provides us the whole subspace of common
eigenstates and via we can easily construct all p-attractors.

Let us show here the difference between the parts of the attractor space formed by the p-attractors and
the non-p-attractors. All p-attractors are determined by equations (6:5)). Following the same separation
steps as we performed earlier, equations (6:5)) can be rewritten into the local condition for coin blocks

and the set of shift conditions for p-attractors. The coin condition turns out to be the same as for general

attractors ( cf. Eq. (5:16) ). However, the shift conditions ( ¢f. Eq. (5:13) ) differ:
ScSLY SSh =Y VKK, L,L CE. (6:12)

In fact, this is the only difference between general and p-attractors for percolation quantum walks. One
can employ this knowledge to construct the whole attractor space. First, through the common eigenstates
one can construct all p-attractors. Next, by allowing the less restrictive conditions on general attractors

one can find the missing non-p attractors.

6.3. Conclusions

The general method developed for solving asymptotics of RUO maps (See Chapter [3|) incorporates
a key part, which is the construction of the so-called attractor space through finding attractors. These
attractors are invariant fixed points of the open time evolution, albeit they are not restricted to valid
density matrices. Consequently, attractors do not carry an inmediate physical meaning. More import-
antly, if one cannot find all attractors, then there is only a very limited knowledge which can be obtained

about the asymptotics of the system.

In this chapter we have given an ansatz which is based on the construction of attractors by using
the pure fixed points of dynamics: common eigenstates. Naturally, these common eigenstates are much
more easy to find, and all of them carry a direct physical meaning. The subspace formed by these
eigenstates are decoherence free, thus are protected from the effects of the open system dynamics. Even

without knowing the full attractor space this knowledge can be employed. We have also shown that the
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attractors built from these eigenstates — which we call p-attractors — obey a stricter set of conditions
in comparison with the general attractors. Thus, not all attractors can be constructed as p-attractors.
A straightforward example for such non-p-attractor is the trivial attractor: the completely mixed state.
However, in some cases the full attractor space is provided by the span of the trivial attractor and the
p-attractors. We showed that in this case the asymptotic time evolution can be given in a nice concise
form. We note here that this minimal subspace case will surface again later for some percolation quantum
walks.

We have applied the proposed ansatz on discrete time percolation quantum walks. We saw that
the separation of time evolution allows for finding common eigenstates easily. We also illustrated the
difference between p- and non-p-attractors. The deeper understanding of this difference allows for finding
asymptotics in a very economical way: First, one should construct all p-attractors through the easy to
calculate common eigenstates. Second, by allowing the conditions of general attractors one can construct

the missing p-attractors.






Chapter 7

One-dimensional quantum walks on percolation graphs —

complete analysis

The problem of the discrete time quantum walks on one-dimensional percolation graphs represent
the most simple scenario when one wishes to join these two areas of physics (See Chapter [4f for details).
However, the problem was only partially addressed so far in the literature, and most studies were only
numerical due to the complexity of the problem. Here our goal is to give a complete, closed form solution

to the one-dimensional problem while leaving it as general as possible.

We employ our methods given in the previous chapters to solve the time evolution of the one-
dimensional quantum walk on percolation graphs using general SU(2) coins. We study two basic graph
families: the circle and the linear graphs, corresponding to the periodic and reflective boundary condi-
tions respectively. We derive the explicit closed form of the asymptotic states and find a rich variety of
asymptotic solutions. We also discover the presence of the so-called edge states which are asymptotic

states exponentially localized at the boundaries of the system.

This chapter is organized as follows. In the first section we explicitly derive the asymptotics of
percolation walks on circles and lines. In section we focus on the edge states. Finally, we draw

conclusions.

7.1. Explicit solutions

In this section we explicitly solve the asymptotic time evolution of cycle and line graphs, both con-
sisting of N vertices. We will rely on the notation used for one-dimensional walks of Sec. Let us

give the form of the time evolution operator of the one-dimensional percolation walk ( ¢f. Egs. (4:3),

(5:4) and (5:5) ) here:
Ux = Sc(Ip®C), (7:1)
where

Sk = Z | + 1, R){x, R| + Z |z — 1, L){x, L| +
(z,z+1)eK (z,x—1)eK

> jz L)@ R+ Y xRz, L. (7:2)

(z,24+1)¢gK (z,z—1)¢K
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Both definitions depend on the configuration of edges K C E and we set the reflection operator R = o,.

We start by employing the pure state ansatz of Chapter [6] to construct some part of the attractor
space. For that we must search for common eigenstates of the dynamics, which is done by solving the
local coin conditions and shift conditions . We repeat that equations determine the
possible eigenvalues a corresponding to the common eigenstates and also the structure of internal

coin states. These internal coin states are then bound to each other via shift conditions .

To continue the analysis it is crucial to understand the difference between the shift conditions on p-
attractors (6:12)) and non-p-attractors (5:13)) in our model. Let us denote a matrix element of p-attractor
Y in the natural basis as

<Sl,Cl‘Y‘32,CQ> = Ysner (7:3)

52,C2

Using this notation we rewrite shift conditions (6:12) as

s1el,L _ yrs1,R _ yrs1, R _ yrs161,L .
Yoorrl =Vor =Yodip =Yor™ Vssus2eV. (7:4)

We repeat that the latter equation describes the shift condition requirements on the elements of p-
attractors. On the other hand, general attractors for the same system have the shift conditions ,
(5:23) and (5:24). A closer second look reveals that is the same condition as , thus the only
difference is given by the less restrictive conditions (5:23)) and (5:24]).

In summary, the complete attractor space can be constructed as follows. First, using one can
determine the possible « eigenvalues and corresponding internal coin states. Second, employing the pure
state shift conditions all common pure eigenstates can be constructed. Using an orthogonalization
process, a corresponding orthonormal basis must be formed from the eigenstates. Next, according to
(6:3)) all p-attractors can be constructed, along with the corresponding |A\| = 1 superoperator eigenvalues.
Then, by allowing the general constraints and , the attractor space must be extended to
non p-attractors. In this way at least one additional attractor, proportional to identity, will be found,
which is the trivial solution. We note that the different boundary conditions are handled by the shift
conditions in all cases. Thus, if s;(2) © (®)1 belongs to a reflecting boundary (in a case of the line graph),

the corresponding equations must be omitted from the set of shift condition equations.

Let us move on to solve the problem explicitly for the complete SU(2) group of coins, and for arbitrary

N number of vertices. We parametrize the coins as

(¢4 — i) cos Bsin 3 e~ cos? B+ '@ sin? B

C(Oé, B, 7) = ) . , ,
e cos? f + e~ sin? B (ez(a_” — e"(a+7)) cos Bsin 8
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with S # k-7/2|k € Z and a # k-7 |k € Z. Thus we exclude coins leading to a trivial scenario in which
the resulting dynamics merely relabels quantum states and does not invoke any interference effect. In
fact, such special cases without any quantum interferences represent a purely classical process, thus can

be solved using a classical stochastic description.

We solve (6:11)) to gain the possible eigenvalues of common eigenstates and its associated local coin
states: The spectrum of the matrix 0,C(a, 8,7) is {€'®, e~} with corresponding eigenvectors |vi)c =
(cos B, e sin ﬁ)T, lva)o = (sin B, —e" cos B)T. Equipped with this knowledge, by employing one

can construct the following orthonormal basis of common eigenstates for a percolation chain

cot B2 — 1/2 (N-1 _
[p1) = (((Cottﬁﬁ))mv—ll> {Z(cOt B)e 5|s)p & |v1)c} , (7:6)

s=0

an B)2 — 1/2 (N-1 4
02 = (fom ) {Z(—tanﬁfe-wsws»@rv2>c} (727

s=0

with respect to the spectrum {e’®, e~?*}. The proof is the following. Any common eigenstate correspond-
ing to eigenvalue e* can be be written in the form |¢) = Y, as|s)p @ [v1)¢. Using shift conditions
we get asy1 = e a, cot 3. Normalization yields the single common eigenstate . Following the same
steps one can show that is the second common eigenstate, corresponding to the eigenvalue e ~**,
We note that these eigenstates are exponentially localized at the boundaries of the system (considering
the position distribution), for most of the coin operators. Thus, they can be termed as edge states. We

discuss these states in more detail in Section [7.2

In view of equation , all p-attractors can be constructed directly from common eigenstates
and . Thus the p-attractor subspace corresponding to eigenvalue A; = 1 is two-dimensional with
the orthonormal basis {|¢1)(d1], |p2){p2|} and p-attractor space corresponding to the eigenvalue Ay =
exp (2iar) (resp. eigenvalue Az = exp (—2i«)) is one-dimensional with orthonormal basis {|¢1)(¢2|} (resp.
{l¢2)(#1]}). In the special case v = /2, both eigenvalues Ay and A3 are equal to —1 and the corresponding

p-attractor subspace is two-dimensional with orthonormal basis {|¢1){(p2|, |¢2)(é1]}.

We find ourselves at the position where we should sort out which attractors remained undiscovered
by the pure state method, i.e. attractors which are non-p-attractors. In order to answer this question,
we have to employ the general separation method. We first determine the dimension of each attractor

subspace corresponding to a given eigenvalue A.

This is straightforward for the attractors associated with A = exp (2ia) for a # 7/2. According to

equations (5:16)) and (5:17)) the general structure of the corresponding coin blocks is one-dimensional

X0 _ 0 coﬂs Bsin 8 —‘e” cos? 3 ‘ (7:8)
esin®? B —e? cos Bsin B
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Let us assume that the coin block X9 is determined, i.e. the free parameter (%) is set. Shift conditions
for the general attractors , and determine all other coin blocks, thus all other u(5)-g are
determined by the parameter v(%9) which is then naturally fixed by normalization . Consequently,
the general attractor subspace associated with eigenvalue A = exp (2i«) is one-dimensional, thus, equal to
the subspace of p-attractors. Similarly, one can easily see the same equivalence among general attractors

and p-attractors associated with eigenvalue A\ = exp (—2ic).

We repeat the same procedure, for the A = 1 eigenvalue. It turns out that the structure of coin blocks
is two-dimensional
(€8)) (s:t)
v c1u
X6t = (7:9)
CTU(S’t) CQU(S’t) + ,U(S,t)
with ¢; = exp (—iy)sinScos 8 and co = —cos (28). Each coin block is determined by two parameters

w1 and v(®Y. Let us fix the linear parameters v and v(%0 of the diagonal coin block X (9. The

less restrictive shift conditions (5:23]) and (5:24)) of general attractors determine only the linear parameter

u(®)) leaving the parameter v(%1) free. Once this remaining free parameter is fixed, no free parameters
remain due to shift conditions (5:22)), (5:23]) and (5:24]). Thus, the attractor subspace associated with
eigenvalue A = 1 is three-dimensional. In order to get all three elements of this subspace it is sufficient

to take the p-attractors of eigenvalue A = 1 and add the identity, i.e. the trivial solution.

The last difficulty arises in the degenerate case when coin parameter o = /2 which leads to the

degenerate superoperator eigenvalue A = —1. By employing (5:16]) and (5:17) we find that the general

structure of the coin blocks corresponding to attractors of A = —1 is
(s,t) (s;t) xy(s5t)
x6t) = p (u(s’t),v(s’t)> = i (ut*?) 4 010) 40 (7:10)
d2u(svt) _dl (u(szt) _|_ 'U(S’t))
with di = —1/2tan(28) and d2 = exp (i7). Repeating the same steps as above, one can find that
the attractor subspace associated with A = —1 is three-dimensional. As the subspace of p-attractors
associated with eigenvalue A = —1 is only two-dimensional, we miss one attractor. In order to construct

such attractor we derive a recurrent formula for coin blocks of p-attractors and attractors. Assume that
we know one of the coin blocks X ). Then using shift conditions for p-attractors 1' one can show

that neighboring coin blocks of p-attractors are determined by formulas

X&) = p (—fﬁu(s’t) — dyd (u(s’t) + U(S’t)) ydida (u(s’t) + U(S’t))> ) (7:11)
1

x(+14) _ p <d1d§ (o) 00, B0 i (o) vw))) . (7:12)
1
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In the view of these relations we can immediately have two observations. First, all coin blocks of a p-
attractor are determined by a single coin block only. Consequently, the subspace of p-attractors associated
with A = —1 is two-dimensional indeed. Second, if one coin block is zero, then all other coin blocks and
the whole p-attractor is inevitably zero. In other words, p-attractors corresponding to A = —1 cannot
have a zero coin block. On the contrary, for general attractors shift conditions are less restrictive. Thus,
formulas for the neighbors of the diagonal coin blocks X (%) read

X(s,s+1) - D (_d2u(s,s) o v(s,s—i—l),v(s,s—i-l)) ,
1

X(s+1,s) - D (u(s+1,s), _Zjv(s,t) _ u(s+1,s)> ) (7:13)

We observe that the linear parameters v(**t1 and u(t1%) are not determined by parameters of the
coin block X5+ Coin blocks X (*5+1) and X(+1) are bound to each other by the shift condition
and thus only one of these two parameters is free in fact. In order to define an attractor X
associated with A = —1 we have to specify two parameters of its coin block X9 and one parameter
v(&stY - All other coin blocks are determined by shift conditions for attractors , and .
To construct the last missing independent attractor it is sufficient to choose coin block X9 as zero
matrix (u(®? = 009 = 0) and set the linear parameter v(**+1) = 1. All other coin blocks are defined

by shift conditions (5:22)),(5:23) and (5:24]). Apparently, the attractor constructed in this recurrent way

cannot be a p-attractor.

An elegant analytical form of this recurrently constructed missing attractor for A = —1 is not known
so far. Using the numerical simulation data, by induction we found that the missing attractor can be

written in the closed analytical form
X, =X 1F'EF, (7:14)

where

N—

1
N (D7 10 .
X 1= SEZO \/ﬁ|s>p<8|p® 01 . (7:15)

C
F is the discrete Fourier transformation operator acting on position states
N-1

F=>Y e "MNg)ptlpeIc. (7:16)
s,t=0
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FE is the block diagonal matrix

—1 oo (29T —i27g/N
1 72 8In ( 7) e cot 28
E= (D A (7:17)
g=0 isin (2’% - ’Y) —cot28 \ €?™/Ncot23 isin (*2]%” - 7>

Let us summarize the complete list of attractors. First, we consider the case with coin parameter

a # /2. For the percolation line the attractor space is five-dimensional.

Zy = [¢1) (1],
Zy = |¢2) (92|, for Ay =1
Zy = sp= (Ip @ Ic — Z1 — Zy)

X = |p1)(¢o|, for Ag=e*®

X = |¢o)(¢1], for A3 =e 2, (7:18)

On the percolation cycle graph the pure eigenstates of the line graph ( |¢1) and |¢2) ) vanish if they
are not translation-invariant. Consequently, |¢;) is a common eigenstate on cycles if (cot B)Ne N =1
is satisfied. Likewise, for |¢2) the equation (—tan3)Ne™" = 1 needs to be true. We note that only
on cycles with even number of edges both eigenstates might be available. For (cot 3)Ne N = 1 the
attractor space of the cycle consists {Z1, Z3}, and when (—tan ,B)N e~N = 1 the attractor space is
spanned by {Z3, Z3}. When both conditions are met, the attractor space of the QW on the percolation
cycle is the same as on the percolation line . We note that satisfying the above conditions allowing
states |¢1) and |¢2) will result a flat position distribution. That is, they will not localize exponentially at

the boundaries of the graph. This property is clearly understandable as the cycle graph has no dedicated

boundaries due to the translation invariance.

For the degenerate case o = 7/2 the additional attractor X, is always present on the percol-
ation line. The shift conditions require translation invariance for the attractors on the percolation cycle.
X_1 is the only building block in the definition of X/, ( i.e. equation ), which might restrict such
translational invariance, hence X appears in the attractors space of cycles with an even number of

vertices only.

The explicit form of attractors given above confirms two important properties of studied asymptotic
dynamics. First, coin blocks of attractors corresponding to A # 1 (while |\| = 1) are strictly traceless, i.e.
should one trace out the coin degree of freedom, the remaining position density matrix strictly depend
on just the A = 1 attractors. Consequently, if one is interested in the position density operator (e.g. want

to calculate the position distribution), only attractors corresponding to A = 1, i.e. Z1,Z5 and Z3 are
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needed for the calculation. Second, all position density operators are stationary in time,
pp(n) =Trcp(n) =Trep(n+1) = pp(n+1) where n>>1 (7:19)

Consequently, limit cycles or other non-stationary asymptotic dynamics might be observable only in the

coin degree of freedom.

7.2. Edge states

It is well known that the position distribution of a classical walk on a connected undirected graph
converge to the uniform distribution. This result is independent of the choice of a graph and from the
initial distribution of the walk. In contrast, we found that the asymptotic position distribution can be
nonuniform on the percolative quantum walks we study, despite the strong decoherence. Moreover, one
can observe the existence of the so-called edge states with exponentially decaying position distributions.
Indeed, both common eigenstates and exhibit this behavior. We stress that this interesting
effect in one-dimension only arises on the line graph — on the cycle graph such states cannot be observed
since they do not fulfill the translation invariance required by the periodic boundary conditions.

In order to study this behavior in more details, let us denote the initial state of the walker by po.
After sufficiently many iterations we reach the asymptotic evolution, which according to can be

written as

1-01—-02

=121+ 027
p(n) 141 229 + N

Z3+ R where n>1. (7:20)

Here, O; denotes the overlap of the initial state pp with common eigenstate (7:6)) and (7:7)), i.e. O; =
Tr{Zipo}. They satisfy relation O; + Oy < 1. The traceless operator R refers to the overlap of the
initial state pg with attractors X, X and X7 /2. However, this part does not contribute to the asymptotic

position distribution of the walker, which reads

P(s) = (s| Trc p(n)|s) = N (01¢V 7% + Oaq®) + % where n > 1. (7:21)

We defined N = (¢—1)/(¢"¥ —1) and ¢ = tan(B). The first term in clearly displays the exponentially
decreasing behavior from the left edge to the right, and then from a certain minimum an exponentially
increasing probability towards to the right edge. The minimum depends on initial overlaps O;. If one
of these overlaps is zero one can observe a monotonous exponential behavior. The second term of the
position distribution is constant and might dampen the exponential behavior slightly.

One can ask the following question: which coins result in the most prominent edge states, i.e. where
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the exponential localization is the most significant. One can easily infer that this occurs if 3 is close to
the values k- m/2|k € Z. That is, the coin is almost a permutation matrix. Surprisingly, the exponential
localization behavior of the asymptotic position distribution is also available for unbiased coins, i.e. whose
matrix elements have the same amplitude. A short calculation reveals that these are coins C(«, 3,7)
which follow condition |sin(a) sin(28)| = 1/+/2. From this condition one can see that the most significant
behavior is obtained for § = 7/8 and a = 7/2, which corresponds to the coin

Cla=m/2,8 = 7/8,7) = —— ) (7:22)

V2 1 e ™

Thus, even for unbiased coins we can get strong exponential behavior of the position distribution
with ¢ = (tan(8))? = 3 — 2¢/2 ~ 0.1716.

7.3. Conclusions

The refined methods given in the previous sections — the separation technique for general attractors
and the pure state ansatz — provide a useful toolset for investigating the asymptotic properties of discrete
time quantum walks on percolation graphs, even when the addressed problem is rather general. In this
chapter we have successfully employed these tools and explicitly solved the problem for one-dimensional

percolation graphs.

First, we used the pure state ansatz and constructed the pure common eigenstates explicitly. From
these states the corresponding p-attractors are built. In the following we employed the general formalism
for percolation walks, to extract the missing non-p-attractors. We obtained closed form solutions using
the general SU(2) coin classes while also keeping the number of vertices of the underlying graph (V) as

a free parameter.

We observed that these one-dimensional systems can exhibit a rich variety of asymptotic behaviors.
Apart from stationary asymptotics keeping some quantum coherence of the initial state, periodic and quasi
periodic limit cycles can occur due to the appearance of the A = exp (£2i«) superoperator eigenvalue.
However, the attractor subspace corresponding to such limit cycles are strictly composed from attractors
with zero trace in all coin sub-blocks. Consequently, limit cycles are not observable in the position
density operator (position distribution), i.e. actual asymptotic dynamics is restricted to the coin degree
of freedom only.

By studying the walk on the line graph we discovered that the pure eigenstates in most cases have the

form of edge states, which are exponentially localized at the dedicated boundaries of the system. These

states also demonstrate the usefulness of the attractor space formalism: the exponent of the localization
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for edge states and also coins leading to the most pronounced effect are obtained easily.
The results presented in this chapter are amongst the first closed form analytical results which showed
the long time dynamics of quantum walks on percolation graphs. The appearance of any forms of

coherence in such systems in the asymptotic limit were first discussed here.






Chapter 8

Two-dimensional quantum walks on percolation graphs

The natural step following the solution of the general one-dimensional problem of percolation quantum
walks is to move to higher dimensions. Two-dimensional quantum walks ( See Sec. ) are straight-
forward generalizations of one-dimensional quantum walks, extending the basic definitions to two-
dimensional graph. However, due to the much broader selection of coins available, i.e. SU(4) for
4-regular two-dimensional lattices, these walks exhibit a richer variety of effects. In fact, the complete

map of behaviors and effects under the total SU(4) family of coins are yet to be explored.

The percolation theory of two-dimensional graph structures is much richer compared to the one-
dimensional percolation graphs. The most interesting effect is undoubtedly the appearance of the non-
trivial phase transition ( See Chapter 4] ). For example, on a two-dimensional Cartesian lattice if the
probability of the edges to be missing is higher than 1/2 the probability for finding an infinite connected

component is exactly zero.

In this chapter we join these two interesting areas and through concrete cases we reveal some unexpec-
ted effects. We extend and employ the methods we developed for studying quantum walks on percolation
graphs to the two-dimensional case. We reveal that albeit dynamical percolation is a homogeneous noise,
it can break a certain rotational symmetry in walks. Moreover, we show that the trapping effect of
the Grover-walk surprisingly survives the decoherence of the dynamical percolation. Finally, we draw

conclusions.

8.1. Description and asymptotics

The Hilbert space of the two-dimensional QWs is a composite one: H = Hp ® Hc, where the position
space Hp is spanned by states corresponding to the vertices of a two-dimensional Cartesian lattice with
M ® N sites, and the coin space H¢ is spanned by vectors corresponding to nearest neighbor steps:
|L),|D),|U),|R) — we expand all 4-by-4 matrices in this basis respectively. A single step of the time
evolution on a percolation graph is given by equations and . We define the reflection operator
as R=o0, ®o0y,.

To solve the asymptotic dynamics of such a system, first one have to find all p-attractors — in analogy

with the one-dimensional case (¢f. Chapter (7)) . This can be done by employing equation (6:1]) as

Sk (Ip @ C) [¢) = al). (8:1)
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We separate this equation into a local coin condition with one chosen edge configuration

Sk(Ip @ C)|¢) = aly) (8:2)

and to a set of shift conditions
SirSLlgy = ) VK, K' CE. (8:3)

Let us expand a pure state in the natural basis [1)) = > | .¥stcls,t)p @ [c). Employing this notation,
we can rewrite the shift conditions (8:3)) as

ws,t,R - st@l,t,L V(s,t) c V (84)

Vs v = Ysi01,D
Here we note that in the shift conditions the boundary conditions must be taken into account: The
equations corresponding to the amplitudes where the wavefunction is outside of the graph with reflective
boundaries (carpet graph) should be omitted. The periodic boundary conditions (torus graph) are taken

into account by using modulo M (N) operations.

After one successfully constructed all pure common eigenstates, by employing (6:3)) all p-attractors
can be built in a straightforward way. As in the one-dimensional case, all such p-attractors satisfy the

shift condition
ScSLYSeSh, =Y VKK, L,L CE. (8:5)
However, one can see that general attractors must satisfy a less strict condition
SSLY SkSL =Y VK,K' CE. (8:6)

Consequently, one can investigate the differences between the two latter sets of shift conditions, and
construct all missing non-p-attractors. The whole process is analogous to the method we give in Chapter
[l However, since the dimension and the possible degeneracies in the system are higher, the analysis is
much more involving. In fact, the vast number of special (e.g. degenerate) sub-cases makes the most
general problem using SU(4) coins practically unsolvable in a closed form. However, as we show in the

following, investigating just some special cases can lead to unexpected results.
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8.2. The two-dimensional Hadamard walk: breaking the directional

symmetry

The two-dimensional Hadamard walk (c¢f. Section [1.1.2)) is a direct generalization of the one-

dimensional Hadamard walk, using the tensor product form coin

1 1 1 1

11 =1 141
H®P) = H@H == , (8:7)

201 1 -1 21

1 -1 -1 1

where
1 (1 1

H=— , (8:8)

V21 21

is the well known coin operator of the one-dimensional Hadamard walk (c¢f. Section . In the
undisturbed case this coin exhibits a spreading behavior, which is characterized by peaks propagating
from the origin at a constant velocity. In the percolation case first we solve to obtain the spectrum
of common eigenstates resulting in the set of eigenvalues {i,—i,1,1}. The corresponding eigenvectors
of the RH?P) operator are |v))c = %(1,—2‘, —i, =17 |u)o = %(l,i,i,—l)T, lvs)o = %(1,0,0,1)T

and |vg)o = %(O, 1,—1,0)T, respectively. We find the following orthonormal basis of common pure

eigenstates on the percolation M x N carpet

MIN-L (g
1) = 2 2 /—MN|5715>P ® |v1)c (8:9)
MoIN-L ()
|¢2) = 2. 2 \/m|87t>13 ® |va)c (8:10)
M-1
|¢3(t)) = 2 \/M\S,ﬂp ® |vs)c (8:11)
= (-1
Pa(s)) = s, t)p ® |va)c - (8:12)

T
=

The next step is to prove the completeness, i.e. that these are indeed all pure common eigenstates
available. For that we apply shift conditions (8:4)) on the coin eigenstates |v;)c. In the case of the
a = i eigenvalue a general common eigenstate must have the form [¢) = > _, as¢ls, t)p @ [v1)c. Thus,

we get asi1y = —asy and ag41 = asy, thus a single eigenvector is found and it takes the form (8:9).
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Similarly, for & = —i a single vector (8:10) is found. For o« = 1 the general form of a common eigenstate
is |¢) = Zsi |s,t)p ® (ast|vs)c + bst|va)c). Applying the shift conditions we find as; = as—1; and

bst = —bst—1. This means M + N free parameters, thus an M + N dimensional subspace of common

eigenstates with basis vectors (8:11)) and (8:12)).

Now, we have to determine the remaining attractors which cannot be constructed from common
eigenstates. Like in the one-dimensional case, non p-attractors can be searched in a diagonal form. Thus,

solving the local equation (5:15)) for a diagonal coin block for A = 1 imposes

a c C A
d b B D
B = , (8:13)
—-D B b —d
A —-C —c a

where a — A =b+ B and D —d = ¢+ C. As we require only diagonal coin blocks to be nonzero, and
also for them A = B=C =D = ¢ = d = 0, thus ¢ = b. This means that all diagonal coin blocks are
proportional to identity X ss”f = astJ. Due to shift conditions all a,; are equal, thus a single attractor
is revealed to be proportional to the identity, i. e. we found the trivial attractor as the only additional
non-p attractor. Similarly, one can show that for the other possible attractor eigenvalues there are no

additional non p-attractors. In summary, all attractors can be constructed employing (6:3) and adding

the trivial attractor proportional to identity. Thus, the solution presented here is complete.

Let us have a look on the influence of boundary conditions on the available eigenvectors. It should
be noted that |¢1) and |¢2) are not available for periodic boundary condition in the s-direction with odd
M. In a similar way |¢4) is not a common eigenstate for periodic boundary condition in the ¢-direction
with odd N. From the a = {i,—i,1,1} pure state eigenvalues the possible attractor space eigenvalues

are A = {1,—1,4,—i}. For the A =1 eigenvalue, for all boundary conditions

Xo=1 (8:14)

Xi(t1,t2) = |p3(t1)) (@3 (t2)] (8:15)

are valid attractors, spanning a 1+ N? dimensional space. For even M-s on periodic boundary conditions

in the s direction or open boundaries in the s direction additional attractors

X2 = [¢1)(¢1] (8:16)
X3 = |¢2)(¢2] (8:17)

form a two-dimensional space. When in the ¢ direction the system is open or periodic with even N-s the
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additional

Xa(s1,82) = |Pa(s1))(Pa(s2)] (8:18)
X5(s1,t2) = |pa(s1))(#3(t2)] (8:19)
Xe(t1,52) = |p3(t1))(Pa(s2)] (8:20)

attractors become available, forming an M? 4+ 2M N dimensional space.

For the superoperator eigenvalue A = 4, for even M-s in the s direction or open boundaries in the s

direction

Yi(t2) = |é1){(¢s(ta)| (8:21)
Ya(t1) = [¢3(t1)) (92| (8:22)

attractors are available spanning a 2N dimensional space. The following attractors appear in addition if
either we have open boundary condition in the direction ¢ or we have periodic boundary condition for ¢

with even V:

Y3(s2) = |¢1)(¢a(s2)] (8:23)
Yi(s1) = |¢a(s1)){¢2] . (8:24)

In that case the dimension of the attractor space is increased by 2M. The form of definition ([5:7)) implies,
that the attractors corresponding to the conjugate A = —i eigenvalue are simply the hermitian conjugate

of the attractor space matrices corresponding to A = i.

The last possible superoperator eigenvalue is A = —1, with the attractors
Z1 = [¢1)(e2] (8:25)
Zy = [¢2) (1] (8:26)

available when direction s is open or periodic with even M, adding a two-dimensional space to the
attractor space. Altogether, the maximal number of attractors for carpet (open boundaries) or for an

even-times-even torus (periodic boundaries) are (M + N + 2)% + 1.

Let us now analyze the consequences one can draw from the explicit form of the eigenvectors -
for the asymptotic behavior of the walks. The common eigenvectors |¢1) and |¢2) in (8:9),
are uniform in position. When the asymptotic state can be expanded by these, then the asymptotics
will be uniform in position. In contrast, the other two families of eigenvectors |¢3(t)) and |p4(s)) in

(8:11)), (8:12)) are spatially non-uniform. The asymptotic states built by them will have ridge like stripes.
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Figure 8:1. Asymptotic position probability distributions P of the two-dimensional Hadamard walk on the torus
graphs, starting from the initial state: |7,7)p ® %(\Mc +|D)¢). The plot on the left corresponds to the 15 x 16

percolation torus and the plot on the right corresponds to the 16 x 15 percolation torus. Due to the 90 degree
rotation of the underlying graph (and the initial state), the position distribution changes considerably. For the
unitary (percolation-less) case the symmetry breaking is not observable within numerical precision.

Therefore, the boundary conditions for which |¢3(t)) or |p4(s)) are allowed can lead to a non-uniform
asymptotic position distribution. While dynamical percolation means a spatially homogeneous source of
decoherence, it may result in a spatially inhomogeneous asymptotic distribution. However, these states
are not edge states like in the non-uniform one-dimensional walks. In contrast with the two-dimensional
counterpart the Hadamard walk on a one-dimensional percolation lattice always results in a uniform

distribution in position.

Further analyzing the asymptotically inhomogeneous solutions we find that percolation can cause the
breaking of the directional symmetry, in the following sense. Taking a certain initial state the undisturbed
(unitary) two-dimensional Hadamard walk may show a directional symmetry for the position distribution:
if both the graph and the initial state are rotated by 90 degrees the resulting position distribution will
also be a rotated version of the original position distribution at all times. In a numerical example we

demonstrate that introducing percolation in this system can break the above directional symmetry.

Let us consider the example of a torus with size even-times-odd. A quantum walk with percolation
on such a torus will have an attractor space with dimension (N + 2)2 + 1. In contrast, if we rotate the
graph (odd-times-even torus) while keeping the coin operator the same, we find an attractor space with
dimension (N 4 M)? + 1. This change in the dimension of the attractor space clearly demonstrates the
symmetry breaking. Furthermore, by examining the corresponding eigenvalues we find that in the second
case (odd-times-even torus) only the A = 1 eigenvalue occurs, leading to stationary asymptotic states.
Whereas in the first case (even-times-odd torus) also the A = {—1,£i} eigenvalues will be included in
the solution possibly allowing for oscillations in the asymptotic state of the system. In figure we plot

the asymptotic position distributions for the two cases. Numerical simulations of a Hadamard walk on
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Figure 8:2. Trapping (localization) of Grover walks (see section on the 15 x 15 torus (periodic boundaries).
The plot on the left shows the distribution after 1000 steps if unitary time evolution on a perfect graph. The plot
on the right shows an asymptotic position distribution of the Grover walk on a percolation graph. Both walks are
started from the initial state |7,7)p ® 2(|L) + |D) +|U) + |R)). The localization property is observed both for the
closed and open system dynamics. This effect is due to the common eigenstates of the system with finite support
(¢f. equation ). We note that in the percolation (plot on the right) case the peak is not as high as for the
unperturbed walk.

tori without percolation show no difference between even-times-odd and rotated odd-times-even systems
within numerical precision. Thus, we conclude that the directional symmetry breaking is induced by

percolation. This is a new effect which was not reported before.

8.3. The Grover-walk: preserving trapping on percolation lattice

Two-dimensional quantum walks driven by the Grover coin (cf. Section [1.1.2))

-1 1 1 1

1 1 -1 1 1
G=- (8:27)

2 1 1 -1 1

1 1 1 -1

gained a considerable interest in the literature, due to their use in quantum search (See Section
and also by exhibiting the property of trapping (localization). This latter phenomenon is the inability of
some part of the wave function to leave its initial position due to destructive interference of the outgoing
waves. That is, a walker started from a localized initial state can be always found at its initial position

with a finite probability, except for a single well-defined initial state.

In the following, we show the attractor space of the Grover walk. The common eigenstates defined
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via equation (8:1)) have the explicit form of

M-1N-1

|p1) = Z |s,t)p @ |v1)c (8:28)

s=0 t=0

|p2(s, 1)) ® |va)c + s, t B 1)p @ (Jva)c + |vs)c)

\[{|s t)p
+s®1,t)p @ (Jv2)e + |va)e)

+s®1,t D 1)p @ (lva)e + |vs)e + |va)e) }, (8:29)
R

¢3(s)) = Z
e
[9a(t)) = Z

s=0

s, t)p @ |vs)c, (8:30)

QL

|5 thp ® |vi)c, (8:31)

where [v1)c = (1,-1,—-1,1)T, |Jva)c = (1,1,0,0)7, |v3)c = (0,—1,1,0)T and |vs)c = (~1,0,0,1)T.
These eigenstates correspond to the eigenvalues o = {—1, 1,1, 1}, respectively. The addition denoted by
@ takes the boundary conditions into account: for reflecting boundary conditions (e.g. carpet) the part
of the states leaning over the boundary of the graph should be omitted (its amplitude is zero and the
corresponding superposition state is normalized accordingly), and for periodic boundary conditions (e.g.
torus) the addition @ corresponds to modulo operations with respect to the graph size.

Using these common eigenstates all p-attractors can be constructed by employing equation (6:3)).
Performing the general analysis results that the only non-p-attractor is the trivial one, which is propor-

tional to identity. Thus, the total number of attractors is (M N + M + N 4 1)2 + 1 for all carpets, and

(MN +1)%2+1 for tori if M or N are odd. However, in the latter case (8:30) and (8:31)) are restricted by

the periodic boundary conditions — they cannot be used to construct attractors. When M and N are
both even in the case of tori, a single additional state from or can be chosen as an additional
common eigenstate. This results in an attractor space with total number of attractors (M N + 2)% + 1.
Analyzing the structure of the eigenstates reveals their connection with the effect of trapping. The
common eigenstates |p2(s,t)) have finite support. Consequently, these states cannot be sensitive to
boundary conditions, thus one can expect that they remain common eigenstates even on an infinite
system. Moreover, these states are responsible for the trapping (localization) effect: An initially localized
state overlapping with a |pa(s,t)) state can always be found at its initial position with finite probability.
The trapping effect for the percolation graph is illustrated in figure [8:2] In addition, the family of pure
localized eigenstates |¢p2(s,t)) form a subspace which is free from the decoherence effects of the dynamical
percolation. Such decoherence-free subspace might be quite useful, e.g. serve as a quantum memory.
We have to make one more remark about these trapping eigenstates. In the literature of quantum walks
localization (trapping) is a phenomena corresponding to the behavior of the system, namely that at the

origin the probability of finding the particle is non-vanishing. However, this definition is not really suitable
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for all systems, e.g. on finite systems, where naturally the wavefunction cannot escape. At the same
time, as we have shown in this very section, trapping is due to the appearance of exponentially localized
eigenstates. Consequently, we point out that the phenomena called "trapping (localization)" in quantum
walks might be more general when it would refer to exponentially localized stationary eigenstates, instead

of a recurrence property only meaningful on infinite graphs.

8.4. Conclusions

Moving from one- to two-dimensional quantum walks introduces a lot of new and interesting effects.
Similarly, the problem of percolation is much more diverse for two-dimensional lattices. In this Chapter
we studied two-dimensional quantum walk models on percolation graphs with different boundaries: the
torus and the carpet, corresponding to the periodic and reflective boundary conditions.

The first walk we studied is the two dimensional generalization of the Hadamard walk. We have
constructed the attractor space explicitly and pointed out the important differences in contrast with the
one-dimensional counterpart: First, the asymptotic distribution of the two-dimensional Hadamard walk
can be non-uniform. Second, the percolation can induce a rotational symmetry breaking to the system,
which is not observable in the closed system dynamics.

The second model is the Grover walk. Here, we found that the trapping behavior of the closed system
surprisingly survives the decoherence effect of the percolation. This is apparent from the common pure
eigenstates with finite support. These states are fixed points of the dynamics, moreover they span a
decoherence free subspace. Thus they might be used to preserve quantum information. We also have
to note that these eigenstates point out that the "trapping (localization)" property of quantum walks
can be tied to eigenstates, thus can be generalized to finite graphs, whereas the original definition of
localization is only suitable for infinite graphs.

The general problem of two-dimensional walks on percolation lattices requests the solution of the
complete SU(4) problem. Practically, this problem would be very cumbersome to solve, and the number
of special sub-cases induced by degeneracy would deny any closed form solutions. Nevertheless, subsets

of the SU(4) with lower number of parameters might be explored using the methods we showed here.






Chapter 9

Entropy rate of quantum walks

Quantum mechanical systems can be disturbed in several ways. Like in the case of percolation
quantum walks, one can couple the system to a noisy environment, making the system open. Another
approach is naturally given through quantum mechanics: measurement. One could raise the question:
How much quantumness a system can keep if it is frequently measured? Our goal is to connect the answer
to this question to the information content of the data obtained from the frequent measurements using

the entropy rate.

Entropy rate quantifies the asymptotic per symbol information content of a discrete time stochastic
process (which can be a frequently measured quantum system), as we reviewed it in Chapter 2| of Part
[. For such stochastic processes the entropy rate replaces the entropy in the asymptotic equipartition
property. Classical walks, which are classical Markov chains, are the typical textbook examples for the
entropy rate. One can address the previous question from approaching from this direction too: What is
the entropy rate of the quantum generalization of the classical walk? Does its entropy rate reflects some
of its quantum properties? In this chapter we study these questions in detail. We develop analytical
methods to calculate and approximate the entropy rate of periodically measured quantum walks. Through

this we intend to investigate the classical-quantum transition in terms of classical information theory.

This chapter is organized as follows: First, we sketch the model we wish to study in Sec. Next,
to give a reference point, we calculate the entropy rate of certain periodically measured classical random
walks. Then, in Sec. [9.3] we define a scenario in which the quantum walks serve as a signal sources. In
Sec. we give an explicit method to calculate the exact entropy rate of this model. In the following, we
explicitly calculate the entropy rate of the one-dimensional Hadamard walk for frequent measurements.
Due to the computational complexity of the method giving the exact rate, we give an upper bound
protocol through the hidden Markov model, and we determine the scaling of the entropy rates in Sec.
In Sections and we discuss two other approaches for calculating the entropy rate: the “most

quantum" scenario and the “quantum entropy rate". Finally, we draw conclusions.

9.1. Periodically measured walks in a black box

We consider the following scenario. Let us assume that we have a source of information in a black boz.
We know that there is a physical process inside, which generates classical messages. However, this process

might be either a classical random walk or some quantum process generating classical information. We
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post that the quantum process has a well defined classical counterpart: If decoherence is significant,
it becomes a classical random walk. A suitable choice is the discrete time quantum walk (QW) (See
Chapter . Assuming such black box, we can utilize the apparatus of classical information theory
to compare the classical random walk model with one of its quantum generalizations. There are two
reasons behind the usage of the black box terminology: First, we want to hide the quantum or classical
walk inside. Second, we restrict the number of tools available: the black box performs all quantum and
classical measurements, the only information available is the position measurement outcome. We stress
that we do not go beyond the concepts of classical information theory. Instead, we utilize them in order
to learn more about the classical-quantum transition: What is the difference between a classical and
quantum walk driven black box from the point of view of entropy rates? Does the periodically measured
quantum walk keep some of its coherence?

The first problem we encounter is due to the measurement which disturbs a quantum system, thus
the measurement protocol should be defined properly. We choose to periodically measure the same
quantum walk over and over again. (Another approach would be to perform every measurements on a
new, undisturbed system: we address this most-quantum scenario later.) The next problem is due to the
correspondence of quantum walks with classical walks: Frequent position measurements, mean a strong
decoherence for QWs, thus a classical walk. We overcome this problem by making the measurements less
frequent, i.e. the walker residing in the black box are not measured after every single steps, but we let
it evolve for more steps. In this way we hope that some of the characteristic quantum behaviors of the
system can be observed in the entropy rate. In the following we determine the entropy rate of periodically

measured classical walks to give a reference point for the quantum case.

9.2. Entropy rate of some classical random walks

We remark here that for a general classical walk as a stationary Markov process, the entropy rate,
according to Eq. , is the average of the entropy of the rows of the probability transition matrix taken
with the stationary probability of each vertex |Z| In particular, if the stationary distribution is uniform
and, for some symmetry reason, the rows are permutations of each other (thus having the same entropy),
the entropy rate is simply the entropy of a row. That is, in the graph picture, the process is equivalent
to a sequence of independent identically distributed random variables describing the random decision
taken by the walker in each step. This reasoning will be applicable in some of the cases we discuss here.
An unbiased (isotropic) classical random walk (CW) on a d-regular simple graph, for instance, has the

entropy rate of logy d: wherever we find the walker, it has d equal-probability edges to follow (isotropy),

7 As each row corresponds to a vertex where the walker may stand in a step, and each column to an edge pointing to a
possible vertex it can jump to.
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and the stationary distribution is obviously uniform. Hence, in this model, for every step we need log, d

classical bits to encode the direction where the walker has moved randomly.

Now let us consider a simple one-dimensional walk on a finite cycle with M vertices, i.e. the walker
in every steps moves one step to the left or to the right with the same 1/2 probability. Suppose, that
we intend to encode the position only at every w-th step of the walk. That is, the position of the walker
is measured at every w-th steps. We call the parameter w as waiting time, which will also be the time
we wait between two subsequent quantum measurements in the corresponding quantum protocol. The
system under consideration is translation-invariant (homogeneous in space): The transfer probabilities
P,_, .15 between arbitrary lattice sites x and x + § depend only on the difference (distance) § of the two

sites. Thus, we can introduce the probability of a d length step
p(0) = Pryurs - (9:1)

In systems obeying this symmetry, it is common to encode the difference ¢ of the actual random position
outcome from the previous random outcome, leading to the usage of at most w4+ 1 symbols, thus a finite
alphabet. It is straightforward to see that the two encoding methods — encoding the absolute position
outcomes and encoding the relative position differences — are equivalent. From and one can

readily give the entropy rate as
HOW =~ >~ p(8)logy p(6) , (9:2)

which after a short calculation results in

] 0)

(—1 + logy mew) , (9:3)

~
~

N | —

which is the Shannon entropy of the binomial distribution and the Gaussian distribution respectively.
Note that the 1/2 pre-factor is a consequence of the diffusive spreading of the CW. Note that Eq. is
valid for both infinite and finite systems, as long as w < M. For finite M and rates that are high enough
(in one-dimensional cycle graphs, for instance, this occurs for w > M/2), the walker mixes with itself,
making the rate given by Eq. inaccurate. In this case the sequence becomes a series of independent

random variables with a uniform distribution over the accessible positions, thus the entropy rate becomes
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the upper bound of the possible entropy rates,

logy M for odd M
Hlimit = . (94)

—1+logy M foreven M
The difference caused by the parity is due to the fact that the positions accessible for the walker may
be restricted. In a one-dimensional cycle graph with even number of sites (M), the walker, from a
given position, can reach either the even or the odd labeled sites only, depending on the waiting time w.
Therefore, even for the limiting w > M, only half of the sites can be reached by the walker. For cycles

with an odd number of sites, this restriction does not hold. Naturally, for an infinite line (M — o) the

upper limit of Eq. (9:4)) does not exists and the entropy rate is always given by (9:3)).

We can conclude that the entropy rate of a process arising from a one-dimensional classical walk with
waiting time w is simply the Shannon entropy of the distribution of the shifts. Note that for the sake of
readability the sum in Eq. is taken between —w and w; however, since the classical walker leaves
its position in every step, there is a parity correspondence between w and p(J), thus we have w + 1
symbols to encode at most. In the next section we extend the concept of entropy rate to sources driven

by quantum walks by closely following the procedure presented in this section.

9.3. Discrete time quantum walks as stochastic processes

We consider discrete time quantum walks (QWs), as defined in Section thus, following the time
evolution in Eq. . We repeat here that quantum walks are unitary, thus deterministic processes.
However, we wish to use them as the source of messages (classical random variables). Thus, we have to
introduce measurement into the system. We closely follow the procedure we employed for the classical
case in the previous section: We let the walker evolve unitarily for w steps and we measure its position
afterwards. This is the definition of a single iteration step in our process. Following that, we repeat this
iteration step over and over on the same system. Should someone measure the position of the walker,

she will get a random position x with probability
2
p(Xp=2)=> |, d )|, (9:5)

where |[¢;) = U%|1i—1) is the Hilbert vector corresponding to the quantum state of the QW at the kth
iteration step. The corresponding X} is the random variable describing the position outcome at the
kth iteration. From now on, we consider the sequence of X} random variables as the stochastic process

generating the message we wish to encode efficiently — i.e. X} realizes (describes) the output of the
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quantum walk equipped black box.
As it is given in Eq. (1:7), the QWs considered here are translation-invariant (homogeneous):

(y,c|Uz,c) = (y @ 5,c|Ux D 6,c) forall x,y,t,6c. (9:6)

Consequently, in place of encoding the z; measurement outcomes, one can encode position differences
0 = xp — xp_1. Note that this encoding simplification does not affect the value of the entropy rates. In
fact, it is the standard notation for systems with translation invariancﬂ

The proposed definition of a QW-driven message source has a well-defined classical connection: Should
one consider an unbiased coin matrix C' (with all complex elements having the same absolute value in
the natural (computational) basis), a quantum walk measured in every single step (waiting time w = 1)
behaves exactly like a classical unbiased (isotropic) walk.

Throughout this chapter we will use the 2 x 2 Hadamard matrix (¢f. Eq. (1:15) )

Cyp=— , (9:7)

V21 1
driven one-dimensional quantum walks as our concrete example, unless stated otherwise. We use the
Hadamard coin since it is unbiased, thus we have a very well controlled quantum-classical transition at

our hands: measuring the walk after every steps ( w =1 ) results a classical walk.

9.4. Solution — employing the quantum Markov property

This section is dedicated to derive an explicit formula giving the entropy rate of periodically measured
QWs in the black box. To achieve this we will use the quantum Markov chain nature of discrete time
quantum walks, and employ the coin state as a key encoding aid while doing so. We will formally address
the one-dimensional problem, but we stress that the results we give here could be generalized for higher
dimensional QWs in easily.

To begin, we calculate the joint probability distribution p(zy,zn—_1,...,21) of the possible black box
outputs (position measurement outcomes). Employing Eq. , the joint probability distribution of the

random variable sequence X, is given by

PN, EN-1s. - 71) = Tr (stUwstflUw S U po(UP)1S,, . .. (Uw)Tstfl(Uw)Tst) :

(9:8)

8 Equivalently, the original problem can be rephrased so the black box outputs the relative position differences ¢ instead
of absolute positions. This rephrasing does not change the entropy rate of the system.
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where
Sy = |z, R){(z, R| + |z, L)(z, L| (9:9)

is the projector of the von Neumann measurement corresponding to the position |z)p ( cf. Eq. )
and po = |0, ¢0)(0, co| is the initial state of the one-dimensional QW in the black box. Next we employ
the definition in Eq. to obtain the entropy rate. We stress that we have to use the original definition
as we are not considering a classical Markovian process here — in contrast with classical walks which are

always Markovian processes.

Calculating and therefore the actual entropy rate in the asymptotic limit is demanding. In fact,
if one would wish to calculate it using brute force methods, one would encounter an exponential usage of
resources. In the following, we present a method to make the calculation manageable. It is based on the
fact that the transition probabilities between subsequent measurement outcomes depend on a parameter
which in fact can be taken into account: It is the internal quantum coin state, which carries additional

information in the following sense.

After every position measurement, the wave function collapses to a single position site, but the in-
formation carried in the coin degree of freedom that particular site survives the process: It serves as the
initial coin state in the following iteration. After acquiring any position measurement outcome (a black
box output) Xj = x, since the evolution of QW is unitary (deterministic) until the position measure-
ment, the full quantum state of the actual collapsed QW can be reconstructed with the knowledge of
the full quantum state of the preceding (initial) iteration. In summary, the coin degree of freedom serves
as a memory, carrying some information about the previous steps. The importance of this observation
is twofold: First, the information carried in this internal memory can be used to improve our encoding
method. Second, we use the coin to aid our calculation of the joint probability distribution, thus the

entropy rate.

One can argue that all unitary quantum walks are quantum Markov chains by construction, thus the
coin is not really a memory but it describes the state (as in information theory) of the quantum system
in the actual iteration step. However, here we consider a function of the original quantum Markov chain
(the quantum walk), i.e. we just gather the position measurement outcomes. With this respect the black
box outputs can be described with a hidden Markov model, where the original (underlying) Markov
chain is a quantum Markov chain: the two are connected with the nonlinear function of the position
measurement process. However, as we have described above, this function can be inverted, i.e. the coin
state can be determined, and used to predict outcomes, making the output encoding efficient. In this
sense, our encoding might be considered as the actual efficient encoding of the periodically measured

quantum Markov chain, since all quantum states of the time evolution can be reconstructed from the
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classical data. This observation is one of our main results.

Let us employ this knowledge to solve the entropy rate problem. We intend to use the coin as the
hidden continuous parameter of the model, by introducing an extended, P, ., stochastic transition
matrix, where « is an abstract continuous parameter representing the internal coin state. The definition

of the transition matrix is
Prasy =Tt {swa\x, a) <x,a|(Uw)T} . (9:10)

Suppose that we know the initial (previous) quantum state of the system. The quantum state of the next

iteration step can be calculated as follows:

SyU" |z, o)
VT {S,U ]z, o) (z, ol (U™)T}

ly)p ®[C(z,y, a))c = : (9:11)

where we defined function C(z,y, ) giving the unambiguous coin state. By employing these definitions

in Egs. and we arrive to

p(TN, TN-1,...,21) =
PO,CQ—>:E1P11,61—>.’22P332,CQ—>£3 LR PxN,1,6N71—>ZN bl
(9:12)
where ¢; = C(x;—1,x;,¢;—1) and ¢ corresponds to the initial coin state.
Let us use the translation invariance of the system. We shall see that
pc(é) = Pm,c—)m—l—é = Py,c—>y+§ (913)
and
C(d,c) =C(x,x+6,¢) =C(y,y + 6,¢) (9:14)

for all values of z, y, and §. Thus

N

N-1
p(xviN—la vee 71'1) =p <Z 6i7 Z 5i7 RN 61) = pco(él)pq (52) .- -ch,l((SN) ; (915)
=1 =1

where ¢; = C(d;,¢;—1) and 6; = x; — x;—1 with zp = 0. Note that the product form of the probability
indicates the true Markov chain like nature of the system: The probability of any outcome can only depend

on the previous quantum state of the system, that is, the internal coin state and its position (which is
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in the § difference picture is neglected due to translation invariance). Moreover, this description reveals
that the system in question is time invariant, in the sense that the defining matrices P o, are time
independent. Formulated in other way, the solutions of the system are invariant under shifting of the

time ( see Eq. (2:4) ). This will allow us to employ the definition of entropy rate for time stationary
processes in Eq. (2:5).

The Shannon entropy of the joint distribution (9:15)) can be calculated readily using the chain rule as
N

H(Xy,Xy-1,-..,X1) =Y H(Xi|Xi1,..., X1)
=1

N w
= —Z Z vi—1(a) Z Pa(6)logg pa(d)

i=1 aeCS d=—w
(9:16)

where

vil)= Y > via(B)ps(d), (9:17)

b=—w BeC—1(5,a)

gives the distribution of coin states at the ith iteration step. Here,
C1(5,0)={BcCS|C>6,B) =a}, (9:18)
and
vo(a) = dacp - (9:19)

In our notation, the § symbol with two indices ( dq,¢,) is the Kronecker . By CS we denote the continuous

set of all abstract coin states. The entropy rate is then given by taking the limit as in Eq. (2:2)),

1
H(X) = lim —H(Xy, Xy-1..... X1)

N—oo

w

N
= dim S S (@) Y pal0) logpa(6). (9:20)

i=1 aeCS d=—w

Since we discovered the time invariant (quantum) Markov chain nature of the system, we can employ the
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alternative definition (2:5)) of the entropy rate. Thus,

H(X) = H'(X) = lim H(Xy|Xy-1,..., X))

= —]\}i_r>noo Z vN-1(@) Z Pa(6) logy pa(0)
aeCS d=—w
= Z p(a) - H(pa(6)), (9:21)
aeCS

where () = limy_yo0 vn(a) is the asymptotic distribution of coin states 1]

In summary, the method of calculating the entropy rate is the following: First, one should determine
the asymptotic coin distribution u(c). Then po(d) shift probabilities can be determined easily using
formulas in Eqgs. and . Finally, the entropy rate can be obtained using . Note that the
method proposed here can be applied directly for both finite or infinite systems. Also it can be extended
in a straightforward way to higher dimensional quantum walks, as we have not used the dimensionality
of the walk. The remaining task at hand is to determine the asymptotic coin state distribution (),

which we address in the following section.

9.5. Calculating the entropy rate of one-dimensional QWs

So far we have found that the quantum Markov chain nature of QWs can be employed to formally
determine the entropy rate of the periodically measured system in the black box. However, we are yet
to obtained any exact values for the entropy rate. Only one step is missing, which is to calculate the
asymptotic coin distribution p(a)). In this section we show a way to determine the asymptotic coin

distribution, and also explicitly calculate the entropy rate of some QWs.

The asymptotic coin distribution u(«) can be calculated by defining a stochastic matrix,

Pag= > > daxpx(6), (9:22)

b=—wxeC~1(6,8)

which gives the probability that from an « coin state after applying U* the walker is found in the

coin state after the position measurement. It is straightforward to see that F,_,3 is indeed a stochastic

9 Coins states CS does not form a continuous set due to the discrete rotation of the coin operator, thus a summation

symbol in Eq. (9:21) is sufficient.
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matrix,

Z Pap = Z Z Z S, xPx (6)

BeCS 5ecs S=—w xeC—1(5,5)
o=—w

After constructing the complete P,_,3 transition matrix, the p(a) asymptotic coin distribution can be
readily found as the stationary state of the stochastic matrix P,_,3. One can see that the number of coin
state “touched" during the time evolution can be infinite. That would yield an infinite stochastic matrix.

We will address this problem later in the current section.

One-dimensional QWs have some symmetries which can be employed to make the calculation of the
transition matrix more efficient. First, one-dimensional QWs have a spin-flip symmetry. This symmetry
implies that, compared to the general initial coin state [|L)c + r|R)c, the orthogonal r*|L)c — I*|R)¢
produces a mirrored position probability distribution. We use a single important consequence of this
property: A walk started from |L)c produces the exact same amount of entropy for any w waiting times

as the walk started form |R)c, i.e.
H (pr(9)) = H (pr(9)) - (9:24)
Second, for one-dimensional Hadamard QWs,
Posr 4 Posg >207 forall aeCS. (9:25)

Moreover, for arbitrary mixing coins of one-dimensional QWs using the coin operator

e —
C = / (9:26)
f* e*
with |f|> +]e[> =1 and e, f #0
Posir=P,r+Po_r> ‘6‘2(1”71) forall o€ CS. (9:27)

Here, we defined the summarized transition probability for the abstract “joined” coin state LR. This
property has an immediate consequence: The black box based on a QW always forgets its initial state.
Since from an arbitrary coin state a transition to LR happens according to Eq. (9:27)) the part carrying

’2(w—1))k

information about the initial state ¢y at the iteration step k is proportional to (1 — |e , which in

the asymptotic £ — oo limit tends to 0. This observation is one of our main results.
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Figure 9:1. Convergence of the numerically calculated partial entropy rate [¢f. Eq. ] Hy for w = 2 waiting
time. We have evaluated the definition of Eq. for the first n iteration steps, using the joint probability
distribution in Eq. (9:8). We used the one-dimensional QW with Hadamard coin (see Eq. ); the triangles and
circles correspond to the walk started from initial states |1g) = |0, L) and [¢)g) = % (10, L) 4 |0, RY), respectively.

The continuous line corresponds to the analytically determined rate for the simulated model: H;Qw = 4/3 bits.
The dashed line corresponds to the rate of the CW : HSW = 3/2 bits.

Using the method we have given above it is straightforward to determine the entropy rate of the QW

with w = 2 as the simplest, nontrivial case,
g = 4 bits :
2 = g 1ts. (928)

The details of the exact calculation using this approach can be seen in Appendix [A] For reference,
the entropy rate of the classical walk for w = 2 is 3/2 bits as given by Eq. . We numerically
approximated the entropy rate using the original definition of Eq. , for finite n’s |c¢f. Eq. ] We
illustrate the results in FIG. . The 4/3 bits rate associated with QWs contradicts the assumption that
due to ballistic spreading the entropy rate should be higher. In fact, revealing the coin as a carrier of
information, thus extracting more information from simple position measurement outcomes, allows for a
more efficient prediction of the next step, essentially leading us to a more efficient source coding method
— and a lower entropy rate. However, it should be noted that for higher w waiting times the ballistic
spreading will eventually dominate the scaling of the entropy rate, i.e. the rate of the QW will surpass

the rate of the CW. We discuss this question in the next section.

The above given process is adequate when p(«) is nonzero for only a finite number of « coin states,
i.e., the number of coin states arising under the full time evolution is finite. In this case, the size of P,z
is finite too. However, depending on the coin operator and the waiting time we choose, the P,_,3 matrix
can grow to infinite size. This issue can be solved by introducing a truncated (finite) basis. This will
cause an uncertainty in the entropy rate. Let us introduce the set of unknown coin states: |?)c, which

we use when we do not wish to consider (calculate) the elements of P,_,s further. In other words, the
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abstract set “?" collects all the coin states which the system does not touch up to the iteration step &, i.

e.,
?={a € CS|vi(a) =0for alli € [0,k]} (9:29)

where v;(a) is the coin state distribution at the ith iteration step as given in Eq. . It is important
to note that the rule of Eq. applies to “?" as well, and it should be employed to make the truncated
P,_,3 matrix a proper stochastic matrix.

Since the value H(p2(d)) is unknown, Eq. cannot be used. Fortunately, bounds for H(p-(9))

can be calculated in a straightforward manner as

Hpox = max H(pa(6)) (9:30)
and
Hpin = min H(pa(0)) . (9:31)
aeCs

Considering this, the value of the exact entropy rate (9:21)) are in the interval

H(X) = Z ﬂ(a) ’ H(pa(é)) + M(Q(?) (Hmax + Hmzn + {Hmax - Hmzn}) . (932)

ad|?)
We use the compact form with a 4+ sign to denote the interval where the exact entropy rate resides.

The now proposed truncating method can be applied to approximate the entropy rates for arbitrary

w’s. We note that by increasing w the size of stochastic matrices grows rapidly:

dim (P, 5) ~ (w—1)" 1] +1, (9:33)

w— 2

where £ is the number of iterations of the procedure we take during the calculation of the matrix (P,—,3) —
and is also in the definition (9:29)). Similarly, the scaling of 1(?) can be approximated as it is proportional
to the relative error of the calculated entropy rate. After a lengthy, but straightforward calculation this

turns out to be
u(?) & (1= fe] (0 t)krt (9:34)

where we used |e[2*~1) from Eq. (9:27). If we fix the precision (the value of (?)) and the coin (parameter
e) in the last expression, we find that with the increase of w the number of iterations k£ needed to achieve

a fixed precision increases exponentially. Despite the problem blows up exponentially with the increase
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Figure 9:2.  Entropy rates H,, of the periodically measured walks on a one-dimensional line as functions of
waiting time w. The circles correspond to the entropy rate HSW (see Eq. ) of the classical walk. We used the
Hadamard coin of Eq. (9:7) for the quantum walk. The black disks correspond to the exactly calculated entropy
rate ng given by Eq, while the vertical line segments correspond to the interval defined by the lower
and upper bound on the entropy rate in Eq. . The number of iterations is given in Table [l The rectangles
correspond to the upper bound entropy rate H_°""d defined in Section while the continuous line represents
the analytic approximation H3PP** of Eq .

of w, we found that our method converges much faster than mere brute force simulation. This is due to
the fact that the approximations and are based on a worst-case scenario, while as it can be
seen in the explicit calculations, the convergence of the u(«) distribution is much better. Also, we have
to note that our method aimed to calculate the entropy rate only, whereas in brute force simulations one
would calculate the total joint probability distribution and then employ the basic definition — which is
naturally much more resource consuming. To achieve an even lower computational cost in our method,
one can extend the proposed simplifications — by use of the spin flip symmetry — in order to find further

isentropic states like the ones in Eq. (9:24]).

We have also determined the entropy rate of w = 3 walks using the given methods. For the one-

dimensional Hadamard QW the approximative calculation resulted
HIW = 1.499 + 0.004 ~ 3/2 bits . (9:35)

In comparison, the CW walk has the entropy rate of HSW = 3 — (3log, 6)/(81log, 2) ~ 2.031 bits. The

details of the calculation can be seen in Appendix [B] We illustrate our results in Fig. [9:2] and Table [I|

In the following we give an upper bound for the now determined entropy rate which is easier to
measure or compute. We will also discuss the scaling of the entropy rate of QWs with respect to the

waiting time w.
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’ w ‘ Number of iterations
3 11
4 10
5 10
6 4
7 4
> 7 3

Table I. Number of iterations used to calculate entropy rate for the periodically measured quantum walk illustrated
in Fig. The rapid drop in the number of iterations for w > 6 is due to the memory limitation of the current
implementation.

9.6. Upper bound for the entropy rate

Here we describe a protocol which will give us an easy-to-understand and compute upper bound to the
entropy rates of QWs. If one is not aware of the quantum nature of the walk on which the information
source (the black box) is based, she or he might follow a measurement protocol which is suitable for
classical walks, thus ignoring the internal quantum coin state. In this case the outputs of the black box
are assumed to be described by a classical Markov chain. The absence of the additional information
carried by the coin leads to a less efficient encoding and, thus, higher entropy rates. This statement is
also supported by the fact that a function of a Markov chain — a hidden Markov chain — has a higher or
equal entropy rate than the original chain [I4], meaning essentially an upper bound (and lower encoding
efficiency).

Let us propose the protocol which ignores the hidden coin (memory) of the QW in the black box. The

measurement protocol consists of the following steps:

1. Initialize the black box: this puts the walker to state |0, co). Set position indicator z = 0.

2. Let the black box work: The walk evolves for w steps. Following, the black box von Neumann

measures the position. Finally, the black box outputs a random position outcome y € [zSw, xHw].
3. Make a note that a x — y transition happened.

4. Repeat from 2. with y (the current position state) as the new x.

After applying the protocol above for infinitely many times, the probabilities of x — y transitions can
be calculated as relative frequencies. In this way, a stochastic transition matrix P,_,, describing the
QW-driven process is obtained. We stress that in this way it is implicitly assumed that the system can
be described via a time stationary classical Markov chain — which is not true for the QW based system.
Finally, the entropy rate is calculated using Eq. .

We again use the translation invariance ( See. Eq. ) of the system to get rid of the infinite

alphabet (positions): instead of absolute positions we encode the ¢ shifts. Like in the classical case, we
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introduce p(0) by Eq. (9:1)), which is the probability of a § length shift. Finally, the upper bound entropy
rate H}f,ound can be readily determined by Eq. (9:2]): It is the Shannon entropy of the distribution of the

arising position differences (shifts) in the stationary case.

We numerically calculated the upper bound for one-dimensional QW and the actual entropy rate of
one-dimensional CW-driven black boxes using the above upper bound protocol. We used the Monte
Carlo method to numerically simulate the behavior of the black boxes, repeating the protocol until p(J)

appeared to converge. We found that p(J) corresponding to the one-dimensional QW in all cases converges

to
p() = > Tr{!é,c><6,c|Uwﬁo(Uw)T}, (9:36)
c={L,R}
where
=g X 0.0 (9:37)
O 2 ) 9 .

={L,R}

is a state localized at a single position with a completely mixed coin. Note that since pg is completely
mixed in coin space, the effect of the initial |cp) is lost, which is expected for a Markov chain. This result
is in perfect agreement with our result given in the previous section: The system always forgets its initial

state.

To illustrate the possible effects appearing on finite systems, we also performed simulations with finite
M-cycles (one-dimensional cycle graphs with M vertices). Increasing w beyond M /2 in such a system
causes an interesting effect: The CW starts to evolve towards the uniform distribution. As a consequence,
the entropy rate becomes close to its absolute bound Hy;y;t defined in Eq. . In contrast to that, QWs
do not mix due to the unitary nature of the system. Consequently, the self-overlap of the wave function
might induce fluctuations in the entropy rate. In this self-overlapping regime the entropy production of

CWs are usually higher.

Increasing the w waiting time even further, the unitary nature of QWs eventually produces more
interesting effects in finite systems: a behavior similar to collapses and revivals [I78] can be observed
in the upper bound of entropy rate as a function of w and in the entropy rate itself. The appearance
of these phenomena demonstrates the fundamental difference between the unitary and stochastic time

evolutions. We illustrate these results in Fig. [0:3]

The result in Eq. (9:36) allows us to approximate the scaling of the entropy rate. For the approx-
imation we use the weak limit theory of quantum walks [I61HI63]. For high number of unitary steps

(high w’s) the shape of the symmetric probability distribution of a one-dimensional Hadamard QW can
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Figure 9:3. Entropy rate H,, of periodically measured walks as the function of waiting time w. We used QW

(triangles) with Hadamard coin ( see Eq. ) and the unbiased CW (circles) on the cycle graph with 16 vertices.
For the QWs we plotted the protocol giving the upper bound. The straight line corresponds to the theoretical
entropy rate limit of Eq. : Hiipit, = logg M — 1 = 3 bits. In the inset plot, we show traces of the collapse and
revive like effects on the same system for high w waiting times: For w = 216 the time evolution operator comes
very close to a simple permutation matrix, resulting in a very predictable behavior and an entropy rate upper
bound HEd =~ 0.514 bits. Meanwhile, the CW is totally mixing, resulting in an unpredictable outcome, with
the maximal possible entropy rate Hjmit = 3 bits. We calculated all plotted data numerically using the Monte
Carlo method until convergence occurred.

be approximated with the formula
1
p(z,w) = - -
Twy/1 — 210% ( — %)

This weak limit is valid for x € [~w/+/2;w/v/2]. Note that this distribution corresponds to the rescaled

(9:38)

asymptotic position distribution of the Hadamard walk started from the initial state localized at the

origin, with a totally mixed initial coin state pp, as in Eq. (9:37). Consequently,

p(8) = p(x,w)|p=s - (9:39)
Employing (9:2)) the upper bound of the entropy rate can be readily approximated by the integral
w/\/§
e == [ o) - logy pla,w)de, (9:40)
_w/\/ﬁ
which evaluates to
HPPr¥ ~ —0.163164 + logy w . (9:41)

It is apparent that the scaling of the upper bound of entropy rate goes with log, w, in contrast with the

scaling of the classical system ( c¢f. Eq. (9:3) ), which goes with ~ 1/2logy w = logs /w. This result
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Figure 9:4. Upper bound of the entropy rate H>°""d of a one-dimensional QW with Hadamard coin ( see Eq.
(19:7) ), denoted by circles, for infinite or finite (w < M) systems. We used high precision numerical simulations
on cycles with (w <« M), and plotted the converged results. The dashed line corresponds to the analytically
calculated entropy rate of CWs ( see Eq. ), while the continuous line corresponds to the weak-limit-based

approximation of Eq. (9:41]).

can be interpreted as the consequence of the ballistic spreading of the QW. Our numerical calculations
showed that although the weak limit theorem predicts the log, w scaling in the long time limit, the actual
scaling of the upper bound rate is for lower waiting times are still close to the classical logy /w. Even for

0.94

the regime around w ~ 500, we obtained scaling with logy w"”*. We illustrate these results in Fig. [9:4

We move on to discuss the scaling of the exact entropy rate HGWY. Using the weak limit approach
calculating integrals similar to reveal the scaling of other initial states, i. e., the initial states giving
the maximum and minimum entropy production Hyax and Hyi, of and . In both cases the
scaling is proportional to logs w, consequently, the precisely calculated ng entropy rate is also scales

with log, w. Thus, the ballistic spreading dominates the entropy rate for high w values.

In summary, the measurement protocol proposed in this section gives a straightforward way to meas-
ure, calculate, and approximate the upper bound of entropy rates of QW driven message sources. Since,
the exact entropy rate can be quite hard to calculate, the easy-to-calculate and -measure upper bound is
a proper tool for distinguishing walks by their entropy production if the waiting times w is long enough.

We summarize the results given by all proposed methods in Fig. [9:2

9.7. Analysis of independent systems — the “most quantum" case

The walkers living in the black box are measured periodically. During the definition of the system, we
explicitly stated that all measurements are performed on the same system. Every measurement means
a loss of coherence for quantum walks — thus a step towards the classical world. One can consider

the “most quantum" case, when at every iteration step the position measurement is carried out on a
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new, undisturbed system. That is, in the first iteration step we perform a position measurement on a
QW which took w undisturbed steps, and then we discard the system. In the second iteration step, we
perform a position measurement on another QW which took 2w undisturbed steps, and then we discard
the system. All further steps are performed accordingly. In fact, this “most quantum" approach is quite
popular in the literature of quantum walks, for example works dealing with the recurrence properties

[150-153] and hitting times [35] [147] use this approach.

For the most quantum case the X} sequence of stochastic variables is given by
p(Xy = 2) =[S, U0, o) |2, (9:42)

where S, is the position measurement projector given in and ¢g is the initial coin state of the
QW. Since the quantum systems are all independent, there are no correlations between subsequent
measurements, i.e. all X;’s are independent random variables. In this case, the entropy rate calculation

reverts back to the calculation of the Shannon entropy (c¢f. Eq. (2:14) ):
H™ = lim H(X}). (9:43)
k—o0

Let us use our result about the scaling of the Shannon entropy for one-dimensional QWs on the infinite

line
H(Xy) ~logy k. (9:44)
Employing this, the entropy rate of the system is

H™ = lim H(Xy) = klim logy k = oo (9:45)
—00

k—o0

This divergent result is a straightforward consequence of the spreading of the system on an infinite line.

In fact, one would obtain the same result for the entropy rate of independent classical walks.

Still, one can address a question about the entropy rates on finite systems. For the classical case
on finite cycles with odd number of edges, the entropy rate is given by Eq. due to the mixing
behavior of the system. However, since in the quantum case the system is unitary, mixing does not
occur but collapses and revivals might appear as discussed in Sec. [0.6] Consequently, the entropy rate of
independent unitary QWs does not exist due to the lack of convergence. Similarly, for one-dimensional
CWs on cycles with even number of sites, due to the oscillation of the Shannon entropy limit given in
Eq. , the entropy rate does not exist. In summary, we draw the conclusion that for the case of the

independent systems — which is the “most quantum" scenario — the entropy rate is not a suitable tool
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for describing the per symbol asymptotic information generation.

9.8. The quantum entropy rate of periodically measured QWs

So far, we used the classical information theory description, and in particular the Shannon entropy.
However, when quantum mechanical systems are considered for information storage or encoding, the von

Neumann entropy

S(p) = =Tr(plogp) (9:46)

takes the place of the Shannon entropy. Operationally meaning, the von Neumann entropy gives the
maximum number of bits which can be encoded in the quantum mechanical system p without any
uncertainty (error). As the Shannon entropy appears in the definition of the entropy rate, one can

extend the definition of the von Neumann entropy too, to form the so-called quantum entropy rate [179]
Q= Jim S(p,) (9:47)
N N E>noo N pn) - .

This section is devoted to investigate our (quantum) black boxes with respect to this quantum entropy

rate quantity.

The QWs living in the black box are the perfect candidates for calculating the quantum entropy rate,
albeit the original protocol should be modified as follows. At every iterations we let the walker evolve
for w steps, after that we perform a non-selective position measurement. Thus, the state of the system

at iteration step N is
pyv = SeU"pn_1 (U)'S,, (9:48)
x

where S;-s are the projectors of the von-Neumann position measurement, which for one-dimensional QWs

are given in (9:9). Considering the initial state pg, the quantum state at iteration step N is

PN = Z PN, TN-1,-..,21) X

L1y TN—1,TN

{ San U San U5y U¥p0(U™) oy o (U) Say (U*)Suy } (9:49)

P(TN,TN—15-5T1)

where we used . Note that the operators in the curly bracket are proper density operators. The
spectra of py must be calculated in order to determine the von-Neumann entropy (9:46|). However, it is
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straightforward to see that
S(pn) <log(2+4Nw) (9:50)

for all N-s. At iteration step N the walker took Nw steps, thus the quantum state occupy a 4Nw + 2
dimensional subspace in the Hilbert space at most (including the coin space). Since the quantum state
with the highest von-Neumann entropy is the completely mixed state i. e. S = log (2 +4Nw) , the
entropy rate of the walker at iteration step N cannot exceed this theoretical limit. Thus, the quantum

entropy rate of the periodically measured quantum walks are
Q= lim —S(pn) < lim — {log (2 + 4Nw)} = 0 (9:51)
= i,y S0ow) < Jim g fog 2+ 4Nw)} =0, -

Which holds true for all waiting times w. It is straightforward to see that this result holds for all QWs
both on finite and infinite systems. We can draw the conclusion that the quantum entropy rate (9:47) is

not suitable tool for our purpose.

9.9. Conclusions

In classical information theory, the asymptotic per symbol information content of a classical stochastic
process is given by the entropy rate. There are countless dynamical systems in physics, which produce
a sequence of symbols as the output, thereby realizing a classical stochastic process. In this chapter we
studied an example of physical systems enclosed in a black box: the periodically measured classical and
quantum walks. We posted the question whether the value of the entropy rate reflects some properties
of the walk enclosed in the box, and in particular, whether the quantumness of the walk is reflected in
the entropy rate? The quantum system enclosed in a black box is repeatedly disturbed by the project-
ive measurement. One can approach the previous question following a deeper line of thoughts: How

“quantum" a frequently measured system really is?

We have found that the entropy rates of the classical and the quantum mechanical models are indeed
different and they reflect some features of the underlying dynamics. Although we used the classical
definition of the entropy rate, the rich behavior of the quantum world is still apparent. We have given an
elaborate method to determine the exact entropy rate of one-dimensional discrete time quantum walks.
We have discovered that the internal coin state — which is not effected by the position measurements
— serves as a memory, which allows us to develop a more sophisticated coding, thus achieving a lower
entropy rate. In fact, quantum walks are quantum Markov chains, and despite the nonlinear functional

connection between the unitary quantum Markov chain and the corresponding periodically measured
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classical stochastic process, just from the subsequent position measurement values the total quantum
states of the walker can be reconstructed. In this sense, the best encoding given by the entropy rate can
be considered as the actual encoding of the quantum states of the periodically measured quantum walk.
This is one of our main results.

We have shown that the exact entropy rate of the quantum walks can be calculated as the expected
value of the Shannon entropy of the position distributions with respect to the asymptotic coin state
distribution. We found that in the case of frequent measurements the exactly calculated entropy rate can
be lower than the rate of classical walks, due to the improved predictability provided by the coin state.

We also gave an easy-to-measure and -calculate upper bound protocol that describes the entropy
production of one-dimensional QWs when the observer considers the output sequence as a classical
Markov chain, thus neglecting the information extractable from the subsequent outputs. In both the
approximate and the exact cases the scaling of the entropy rate tends to log, w for high w’s in contrast
with the logy 1/w scaling of the classical walks. This is due to the ballistic spread of quantum walks. Also,
in both cases we found that the entropy rate is independent of the initial state of the one-dimensional
QW.

To answer our original question regarding the quantumness of the walk hidden in the box with respect
to the entropy rate, we would suggest using either the exact or the approximate method depending on
the waiting time w (the time between subsequent position measurements). For low w-s the exact entropy
rate is easy to determine, and it is straightforward to distinguish between the classical and quantum
models. For w > 1 the log, w scaling produces higher entropy rates, and using the approximate protocol
is enough to distinguish the two possible walk models.

For the sake of completeness, we also investigated the “most quantum" scenario, where each position
von Neumann measurement is performed on a new, undisturbed system. In this case, the subsequent
outputs of the black box are independent random variables. We found that in this case the entropy
rate does not converge, neither for classical nor quantum walks, and consequently is not a suitable tool
for studying them. We have also studied the quantum entropy rate model where, the von Neumann
entropy replaces the Shannon entropy. For this study, we modified the definition of the black boxed
quantum walk: the box performes non-selective measurement instead of the default selecting position
measurement. However, we found that the quantum entropy rate is always zero.

The fact however that the periodically measured one-dimensional QW has a definite classical entropy
rate also provides that it can be simulated using a well-designed classical walk, at least in terms of the
black box output sequences. This statement is quite surprising as one can even reconstruct the quantum
states of the system just from the outputs. However, on the other hand the observed non-trivial behaviors
in the entropy rate: collapses-revivals, non-monotonicity suggest that the underlying system does not

follow the rules of a classical random walk. We note here that all our results given in this section
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are presented and valid for one-dimensional walks, but the developed methods are quite general, and

presumably could be applied for more general systems.



Summary

Introduction

Quantum walks [29H31l [34H37] are quantum mechanical extensions of classical random walks. As
random walks are suitable tools used in statistical physics and computational sciences, quantum walks
found their applications in quantum physics and quantum information theory [45], [46]. For example, they
are suitable models for describing quantum transport [39-41],[44], scattering [32, (170} [I71] and topological
effects [57H60] in solid state materials. From the quantum information point of view, quantum walks are
considered universal computational primitives [54] [55]. Their simplicity and the rapidly growing number
of applications soon caught the attention of experimentalists, too. Quantum walks have been successfully
realized in a rich variety of physical systems, ranging from trapped atoms [110, 111] and ions [112] 113]

to various photonic systems [TT15H124].

The central focus point of this very thesis is the discrete time quantum walk (QW) (Sec. , which is
a non-trivial extension of the classical random walk. Here, the non-triviality is given by the introduction
of the so-called coin space, an internal Hilbert space, thus, the departure from the scalarity of classical
random walks. These QWs are unitary by design — they correspond to a closed system dynamics.
However, physical processes in nature are subject to noise in general, which might disturb the unitary
evolution of closed quantum systems, essentially leading to an open system dynamics. In this thesis we

studied quantum walks with some kind of disturbed time evolution.

In the first model we studied, the transport (step) process of the walk was disturbed by some noise
corresponding to classical randomness (See Chapter . We described this noise as a change in the
connectivity of the underlying graph given by dynamical percolation. To study this problem we adapted
the asymptotic theory for random unitary operations (See Chapter [3) and also developed it further to

suit our needs and to get a better physical insight.

Another way to break the unitarity of the QWs is naturally given through the apparatus of quantum
mechanics: measurement inevitably disturbs the unitary evolution. Frequent (e.g. periodic) selective
measurements result in a stochastic evolution between (quantum) states. We employ the tools of classical
information theory to characterize the information (or disorder) generation of such process in terms of
the entropy rate (See Chapter . As classical walks are the textbook example of the entropy rate, its
extension to QW based processes possibly can give us some deeper understanding on the fundamental

differences between simple classical and quantum mechanical systems.
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General method for determining the asymptotics of percolation quan-

tum walks

The first disordered system we studied is the discrete time quantum walk on dynamical percolation
graphs. In this model all edges of the underlying graph have a finite probability that they become broken
under unit time step, i.e. the walker cannot pass through at that given time step. The time evolution of a
discrete time quantum walk on a percolation (imperfect) graph is not trivial since percolation graphs are
non-regular. To bypass this non-triviality, we choose to maintain the unitarity by introducing reflections:
a walker cannot pass through the broken edge naturally, instead it suffers a reflection in its internal
coin degree (See Sec. . The complete, statistical time evolution is then given by a random unitary

operation (RUO map), which is also a trace preserving quantum operation (quantum channel).

We have adapted the general theory for solving the asymptotic dynamics of such RUO maps to the
general percolation quantum walk problem (See Sec. , with the crucial and most important part
being the construction of the attractor space: An invariant subspace of the RUO map. We have shown
that due to the product form of the discrete time quantum walk dynamics, the coin operator part and the
shift part — which also corresponds to the graph topology — can be solved independently. We termed
the coin part as “coin condition" and the shift part as “shift conditions". This separation technique
allowed us to parametrize the parts of the problem independently, thus, one might solve a given graph
for a family of coins, or a given coins for a family of graphs, or even both. We have illustrated that
on translation-invariant regular graphs the shift conditions simplify considerably allowing us to keep the
size of the graph as a free parameter (See Sec. . We note that the attractor space cannot depend on
the probabilities used at the construction of the RUO map as long as the set of unitaries used does not
change. This results that neither phase-transitions, nor any non-asymptotic effects can be observed in

the attractors.

Naturally, the size of these problems increases exponentially in the following sense. The RUO map
corresponding to the time evolution results from the summation of many (weighted) unitaries. The
number of unitaries goes with the number of possible configurations, which is exponential with respect to
the number of edges. We have shown that as discrete time quantum walks correspond to nearest neighbor
steps, thus, their unitaries are sparse matrices. Consequently, superoperators can be constructed in
polynomial time on regular graphs (See Sec. . We note that during our studies we performed
several numerical tests to confirm our analytical results and to generate figures, and we found this result

particularly useful.

In summary, our new results presented in Chapter [5are the following. We have applied the asymptotic

theory of RUOs on percolation quantum walks. We have shown that a coin-step separation can be
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performed, allowing us to solve the problem in parts. Thus, more general problems can be addressed.
We showed that the shift conditions corresponding to the step part simplify considerably on regular
translation-invariant graphs (e.g. lattices), allowing for studying whole families of graphs at once. We
have also shown that the superoperators corresponding to the dynamics can be constructed polynomially
on regular graphs with respect to the number of sites. This is particularly useful in numerical analysis,
as the number of configurations grow exponentially with the number of sites, which would make any

brute-force approaches fruitless.

Pure state ansatz for random unitary operations

To determine the asymptotics of random unitary operations (RUO maps) one should find the so-called
attractor space. This invariant subspace is spanned by the fixed points of dynamics, called attractors.
These attractors could be considered as eigenoperators (eigenvectors) of the RUO map (superoperator)
corresponding to unit magnitude eigenvalues. However, there are no direct implications on the physical
meaning of attractors. In fact, the complete attractor space is a linear space, and the set of possible
asymptotic states (proper density operators) is a convex subspace within. In summary, the general theory
(See Sec. for obtaining asymptotics of RUO maps provides only little help when someone wants to
focus on the physical relevance of attractors. Moreover, the attractors are linear operators on the Hilbert
space, thus their sizes scale quadratically with respect to the dimension of the Hilbert space, and naturally

their analysis is more involving than the analysis based on pure quantum states.

We have addressed the problem of giving a direct physical interpretation to attractors, and as a
by-product we managed to make the analysis much more easier to perform: We introduced the pure
state ansatz (See Chapter @ The unitaries used for building up the RUO map can share common
eigenstates: pure states which are eigenstates of all building-block unitaries corresponding to the same
eigenvalues. We have shown that these states are fixed points of the RUO dynamics, thus they can be
used to form attractors of rank one. We termed these attractors as p-attractors. Moreover, the common
eigenstates span a decoherence free subspace, a subspace within the attractor space carrying relevant
physical meaning and importance. We have to note that naturally not all attractors can be constructed
via common eigenstates: the completely mixed state — a trivial attractor due to the unitality of RUO
maps — is one notable example of non-p-attractors. However, for some relevant RUOs the attractor
space is fully determined by p-attractors and the completely mixed state. In this case the asymptotic
time evolution is an incoherent mixture of the unitary evolution on the p-attractor space (decoherence
free subspace) and the completely mixed state projected to its orthogonal complement. Here we note

that this surprisingly compact asymptotics can be observed in some percolation quantum walks.
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To summarize, we have given a refined approach to determine the asymptotic attractor space of RUO
maps (Chapter @ This approach is based on the construction of common eigenstates of the unitaries
building up the random unitary dynamics. Naturally, finding eigenstates is less involving then finding
eigenoperators of the RUO dynamics. Our pure eigenstate ansatz allows for giving a direct physical
meaning for relevant parts of the attractor space, e.g. the pure eigenstates form a decoherence free
subspace. We have also shown that not all attractors can be constructed from common eigenstates,
the completely mixed state being an obvious exception. However, in some physically relevant cases the
p-attractors resulting from the pure eigenstate ansatz and the trivial completely mixed solution span
the complete attractor space. We have shown that in this case the asymptotic dynamics is given as an
incoherent mixture of the unitary dynamics on the decoherence free subspace and the completely mixed

state on its orthogonal complement.

One-dimensional percolation walks: explicit solutions and edges states

The problem of discrete time quantum walks on one-dimensional percolation graphs is the first step
to understand a family of open systems. At the first glance one might see the problem being quite
straightforward: one-dimensional quantum walks are intensively researched and one-dimensional percol-
ation graphs seem to be rather trivial classically. However, the combination of these two basic models is
surprisingly new, and more interestingly non-trivial: Most of the studies performed on these systems are

either numerical or phenomenological and even numerical results are very limited by their exponential

computational costs (Sec. .

In Chapter [7| we applied our general method for percolation quantum walks (Chapter [5)) in tandem
with the pure state ansatz (Chapter @ to explicitly solve the most general SU(2) coin problem of
quantum walks on the percolation cycle and line graphs. These are the most basic examples of one-
dimensional graphs representing the reflective and periodic boundary conditions. We have acquired the
solution explicitly (Sec. . In most of the cases the attractor space consists of p-attractors and the
trivial completely mixed solutions, however, degeneracy in special cases might lead to another non p-
attractor. We have shown that the asymptotics are non-trivial and depend on the coin we choose: apart
from the trivial completely mixed asymptotic state, stationary states with some quantum coherence,
periodic and quasi-periodic asymptotic limit cycles might emerge. We have also shown that the actual
asymptotic dynamics (limit cycles) are only observable on the complete coin-position density operator —
the asymptotic position density operator is always stationary in time. These results are quite a departure

from the complete mixing of classical walks on percolation graphs.

We also commented on the physical form of the common eigenstates we found. They correspond to
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edge states (Sec. on line graphs in most of the cases (for most coin operators). These edges states are
exponentially localized at the boundaries of the system. Apart from these states forming a decoherence
free subspace some interesting physical consequences can be drawn. For example, one can start the walk
in a pure state corresponding to a completely flat position distribution, to find the asymptotic state being
exponentially localized to one of the boundaries of the system. We again note that such effects cannot

be observed in classical percolation walks.

To give a summary, in Chapter [7] we have applied our methods to solve the asymptotic dynamics of
one-dimensional percolation walks explicitly. We have managed to solve the complete SU(2) problem on
the two basic one-dimensional graphs: the cycle and the line graph with IV vertices. We note that these
results are amongst the first closed form, fully analytical solutions obtained for percolation quantum
walks. We have shown that the obtained asymptotics are rather non-trivial: apart from the classically
available complete mixture, stationary states having quantum coherence and limit cycles can appear. We
also analyzed the physical appearance of the solutions, and discovered that on the linear graph for most
of the coin operators edge states can appear, i.e. eigenstates exponentially localized at the dedicated

boundaries of the system.

Two-dimensional percolation walks: symmetry breaking and trapping

The natural step after completely solving a one-dimensional problem is to look at its higher dimensional
counterparts. Even just closed (unitary) quantum walks on two-dimensional lattices (Sec [1.1.2]) exhibit
more colorful behavior in comparison with the one-dimensional model. A notable example being the
Grover trapping. Similarly, two-dimensional percolation graphs offer more challenges and, in addition,

more physically relevant problems, e.g. non-trivial phase transitions.

Similarly to the one-dimensional case, in Chapter [§ we applied our general method and the pure
state ansatz to investigate some special two-dimensional walks analytically. For that analysis we have
chosen the two most studied examples of two-dimensional walks: the Hadamard and the Grover walk.
For the underlying graph we considered two finite derivatives of the Cartesian square lattice: the carpet
corresponding to reflective boundaries and the torus corresponding to periodic boundaries. The solution
of the Hadamard walk (Sec. yielded a number of differences with respect to its one-dimensional
counterpart: While the one-dimensional Hadamard walk always lead to a flat distribution in position (i.e.
there are no edge states), the two-dimensional one can feature position inhomogeneity in the asymptotics.
We also showed that these inhomogeneous solutions (common eigenstates) in fact are sensitive to the
orientation of the graph. While in certain cases a unitary (closed) Hadamard walk on the M x N and

N x M graphs yields a simply rotated position distribution, percolation — which is a symmetric noise
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— can break this rotational symmetry.

The solution of the Grover walk (Sec. resulted in a whole family of common eigenstates with finite
support. These states are responsible for the appearance of trapping (localization) in the unitary (closed
system) case, and surprisingly we found them to appear in the percolation case too. That is, the trapping
effect survives the strong decoherence induced by the dynamical percolation. As being fixed points of
the dynamics, these states form a decoherence free subspace, moreover due to their finite support they
are practically insensitive to boundaries or to the size of the graphs: they might be used for information
storage. We also commented on the implications of such pure eigenstates on the definition of trapping
(localization): Trapping is usually defined in the literature as a situation where the probability to find
the particle at its original position is non-vanishing. However, this definition is rather impractical on
finite graphs. We suggest that the appearance of robust eigenstates with finite (exponentially decaying)
support might be a better indicator for trapping due to the insensitivity to the size of the underlying
graph. We note that both the Hadamard and the Grover walks are examples of RUO maps, where
the pure eigenstate ansatz are highly beneficial: the attractor space is completely determined by the
common eigenstates (p-attractors) and a single trivial non-p attractor, corresponding to the completely

mixed state.

To summarize our new results of Chapter [§ we employed our analytical methods to analyze two not-
able quantum walks on two-dimensional percolation graphs. First, we investigated the two-dimensional
Hadamard walk and gave its attractors in a closed analytical form. We have shown that in contrast
with its one-dimensional counterpart, it can exhibit position inhomogeneity. Moreover, we have shown
that the percolation model is sensitive to certain rotations, ¢.e. with respect to the unitary model some
symmetries are broken. We also studied the Grover walk, and obtained its attractor space in a closed
analytical form. We have shown that the trademark trapping effect of the Grover walk survives the
particularly strong decoherence of percolation. This is due to the family of common eigenstates with
finite support, spanning a decoherence free subspace. We also noted on the implication of such states on

the definition of trapping.

Calculating the entropy rate of quantum walk driven stochastic processes

Quantum mechanical systems can be disturbed in several ways. Up to now, we have studied a system
where the disorder was introduced to the system as an uncontrollable noise coming from the environment.
Here, we consider another approach where the system is disturbed by periodical selective measurements.
One can ask the natural question that how much quantumness a closed system can maintain when it

is frequently disturbed? We approach this problem by studying the information (disorder) a frequently
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measured system generates by using the classical quantity of entropy rate (Chapter . Approaching from
the classical information theory, the entropy rate gives the asymptotic per symbol information content
of a stochastic process. As one typical textbook example of the entropy rate is the classical walk, one

might find it interesting to address the problem of the entropy rate of quantum walks.

As the classical entropy rate has a sound operational (and physical) meaning, we first studied the
problem in terms of classical information theory via embedding both the classical and quantum walks
in a black box (Sec. . We defined a stochastic process corresponding to the periodic von Neumann
position measurement of a discrete time quantum walk (Sec. [9.3). Employing the definition of the
entropy rate we have successfully given an exact method to calculate the entropy rate of this system. In
contrast with the classical random walk, which is a Markov chain, the studied discrete time quantum
walk cannot be considered as a classical Markov chain in terms of position measurement outcomes, albeit

the quantum walk itself is a quantum Markov chain.

In fact, we have shown that the internal coin states keeping coherences after every position meas-
urement serve as a memory. However, the unitary quantum Markov chain nature of the system can be
employed: the actual coin state and, more importantly, the complete quantum state can be deduced
from the mere position measurement data. This allowed us to calculate the entropy rate of the model
as the entropy rate of a classical Markov chain extended with the coin states (Sec. . Moreover, we
also found that the entropy rate does not depend on the initial state, and the system in the asymptotic
limit always forgets its initial state. As the number of coin states can be infinite in the asymptotic limit,
we have also given an approximation (Sec. to calculate the upper and lower bounds of the entropy
rate using finite (truncated) basis (matrices). The given method allowed us to calculate the entropy
rate of frequently measured discrete time quantum walks and compare it with the frequently measured
classical walk. We found (Sec. that due to the implicit memory represented by the coin degree of
freedom the entropy rates of the frequently measured one-dimensional Hadamard walks are lower than

the corresponding classical walk.

Summarizing Sections - we have defined a stochastic process corresponding to periodically
measured quantum and classical walks. We have given an elaborate method for calculating the entropy
rate of quantum walks. We have shown that the quantum walk does not behave as a classical Markov
chain on positions, however, it can be viewed as a classical Markov chain on the position-coin basis. We
have also given a method to calculate the lower and the upper bound of the entropy rate using finite
(truncated) basis. We concluded that for frequent measurements due to the memory effect of the coin the
entropy rate of the quantum model (one-dimensional Hadamard walk) is usually lower then its classical
counterpart. We note here that the methods we have given are rather general and should be adaptable

for higher dimensional quantum walks or other discrete time quantum Markov chains as well.



116 Summary

Determining the scaling of the entropy rate and comparison with other

approaches

The entropy rate of the periodically measured quantum and classical walks can indeed be calculated
and compared. However, the calculation can become rather involving as the frequency of the periodic
measurements becomes lower. In fact, in the worst case the problem becomes exponential (Sec. [9.5)) with

respect to the dimension of the corresponding Markov chains (matrices).

To overcome this problem we have proposed a protocol (Sec. which gives an easy to calculate
and measure upper bound to the entropy rate. If one does consider the quantum mechanical system as
a classical Markov chain, i.e. strictly encodes it with a position transition matrix, she will necessarily
face an encoding which is suboptimal, resulting in a higher entropy rate (upper bound). The functional
dependence between the correct representation and the position only representation and the corresponding
entropy rate inequality is given by the theory of hidden Markov models. We have shown that the scaling
of this upper bound rate can be approximated with the help of the weak limit theorem. We have also
shown that in tandem with the exact calculation approach a lower bound scaling can be given. We
found that in both cases the scaling of the entropy rate for rare measurement is logy w, where w is the
time between two subsequent measurements. In comparison, this value for the classical walk is %logQ w.
The pre-factor difference is due to the ballistic and diffusive spreading of the two models. We drew the
conclusion that in the rarely measured limit, the entropy rate is dominated by the spreading behavior
of the models, and the quantum version surpasses its classical counterpart. We also considered finite
systems (Sec. , i.e. cycle graphs. On these graphs, the classical walk results in complete mixing,
while the quantum case shows a non-monotonous behavior due to the unitarity evolution: collapses and

revivals might occur.

We have also investigated the “most quantum" case (Sec. , which corresponds to the scenario when
every measurement is performed on a new, undisturbed system. Since there is no correlation between the
subsequent outcomes, the entropy rate is simply the entropy of the position distribution of the systems
in the infinite limit. On infinite systems this is infinity, and on finite systems due to the collapse-revival
behavior of finite unitary quantum systems, there is no convergence in the entropy rate. Thus, the “most
quantum" case cannot be studied in terms of the entropy rate.

We calculated the so-called quantum entropy rate (Sec. as well. To this end we had to modify
the system to have a non-selective measurement. We have shown that the von Neumann entropy in the
definition of the quantum entropy rate grows logarithmically with the number of iterations, and thus the

entropy rate itself is zero in the asymptotic limit.

To summarize Sections - P8 we have studied the behavior of the entropy rate of frequently
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measured quantum walks using analytical tools. We have given an easy to calculate and measure upper
bound approximation for the entropy rate, which is based on the theory of hidden Markov models. We
showed that the scaling of the entropy rate with respect to the number of steps between subsequent
measurement can be calculated using a weak limit approach. We drew the conclusion that in the limit
of rare measurements the spreading of the walk model dominates the entropy rate. Should someone
distinguish between the classical and quantum models based on the entropy rates of their periodic position
measurements for frequent measurements one should use the exact method giving back the delicate
differences, whereas in the rare measurement limit one could safely rely on the upper bound approach.
We also investigated the “most quantum" approach, which is a popular approach to characterize some
properties of quantum walks. However, here it did not yield any results due to lack of convergence.
We finally gave the quantum entropy rate of the system and determined that it is exactly zero in all
cases. The fact that the studied quantum models have an exact entropy rate in most of the cases also
provides that its outputs can be simulated using well designed classical walks. In this sense the quantum
mechanical properties of the system are hidden. On the other hand a number of non-trivial effects we
found: memory-like behavior, non-monotonous entropy rate, collapses and revivals reveals the quantum

nature of the walk.

Outlook

The methods given for percolation quantum walks gave us a very strong toolset for studying and
understanding these systems. The growing interest in this field, and the fruitful experiments further
motivate our studies in this direction. The next step could be to study the asymptotics of some other
graph structures or multiparticle walks. One could also possibly search for the application of the given
methods and results in quantum information theory. Another direction is to study the percolation of other
quantum walk models. Our preliminary results on the continuous time quantum walk model suggests that
there are non-trivial solutions as well, albeit the model is naturally more restricted due to the absence of

the coin state.

The asymptotic theory of random unitary operations clearly benefit from the pure eigenstate ansatz.
However, in more general cases the theory can be extended to non-trace-preserving maps, i.e. sources
and drains can be introduced and steady states could be studied with the theory. It would be rather
interesting to find a way to extend the pure state ansatz to this generalized model. Another interesting
aspect is the question of the convergence rates. In some models the rate of convergence might carry an
important physical meaning, e.g. traces of phase transitions. Consequently, developing any method for

this purpose might be prosperous.
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We intended the study of the entropy rate of discrete time quantum walks as a first step towards a
deeper understanding of the concept of entropy rate itself and also the classical and quantum borderline
in terms of information theory. A straightforward extension would be to calculate the entropy rate of
more general quantum systems and draw the conclusion on how quantum mechanics itself is reflected
in this quantity. Another approach would be to find definitions and measurement processes which gives
some way to estimate the quantumness of a given system in terms of the classical or quantum entropy
rate. A promising candidate would be for example the quantum dynamical entropy. We hope that further
studies in this field will lead to some ways to gather a deeper understanding on the mysterious border

between the classical and quantum world.



List of new scientific results

1. T have developed a general method for solving the asymptotics of discrete time quantum walks
on percolation graphs. This general method is based on the attractor-space formalism of the
asymptotic method of random unitary operations, which I separated into two parts by making
a difference between the coin toss and position step. I have shown that the separation process
allows for solving the problem for whole families of graphs and coins. I have also shown that
the superoperator describing the dynamics of the percolation quantum walk can be constructed

polynomially on regular graphs with respect to the number of sites [I].

2. I presented a method for determining the asymptotic attractors of random unitary operations.
The core of this method is to find the common eigenstates of the dynamics, which can be used
to form attractors with a direct physical meaning. I have shown that these common eigenstates
span a decoherence-free subspace. I have also shown that in some cases the complete attractor
space can be determined via common eigenstates and the trivial attractor (corresponding to the
completely mixed state). I determined the formula of the asymptotic time evolution in this case,
which is given as an incoherent mixture of the unitary dynamics on the decoherence-free subspace
spanned by common eigenstates and the completely mixed state on its orthogonal complement. I
have also illustrated the method on discrete time quantum walks on dynamical percolation graphs

and pointed out the important differences with respect to the general method [I1].

3. I have explicitly solved the asymptotic dynamics of one-dimensional percolation quantum walks
by employing the methods I developed. I have given the attractor space in a closed form for the
percolation cycle and linear graph for the complete SU(2) problem. I have shown that there are
non-trivial asymptotics: stationary states with quantum coherences and limit cycles can appear.
I have analyzed the physical form of the solutions and discovered that on the linear graph the

solutions are edge states for most of the coin operators [III].

4. T have explicitly solved the asymptotic dynamics of the two-dimensional Hadamard and Grover
walks on the percolation torus and carpet. I have shown that in contrast to its one-dimensional
counterpart, the Hadamard walk exhibits asymptotic position inhomogeneity. I have also dis-
covered that the percolation model in certain cases is sensitive to rotation, in contrast with the
corresponding undisturbed (unitary) quantum walk. I have found that the common eigenstates of
the Grover walk have finite support, thus the walk keeps its trapping property in the percolation

case [I1].
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List of new scientific results

5. T have defined a stochastic process based on the periodically measured quantum and classical walks.

I have given a general method for calculating the classical entropy rate of these stochastic processes.
I have shown that the frequently measured quantum walk behaves as a classical Markov chain in
the position-coin state basis, and the entropy rate of this Markov chain is equal to the entropy rate
of the previously defined stochastic process. I have also given a method for calculating the lower
and upper bounds of this entropy rate. I have found that in the regime of frequent measurements,
the entropy rate of the quantum-walk-based model is usually lower, due to the memory effect of

the coin state of the particle [IV].

. I have developed an approximation protocol to give an upper bound to the exact entropy rate

of the periodically measured quantum walks. I have estimated the scaling of the entropy rate of
the one-dimensional Hadamard walk with respect to the time (number of discrete steps) between
measurements using the so-called weak limit theorem. I have found that for rare measurements
the entropy rate is dominated by the ballistic spreading of the quantum walk, thus the entropy
rate is higher than in the classical case. I have also studied finite systems and discovered that
collapses and revivals can occur in the quantum walk based system. I have also calculated the
“most quantum case" and the quantum entropy rate of the model to give a comparison. I found
that both of these models are inconclusive for periodically measured walks. On the other hand,
the classical-entropy-rate approach I proposed is a suitable tool to capture some of the quantum

features of the system [IV].



Osszefoglalas

(Summary in Hungarian)

Bevezetés

A kvantumos bolyongasok [29H3T], B4-37] a klasszikus véletlen bolyongasok kvantummechanikai ki-
terjesztései. Ahogy a véletlen bolyongas a statisztikus fizika és a szamitastudomany elfogadott eszkoze,
hasonléan a kvantumos bolyongas is felhasznalhatéonak bizonyult a kvantumfizikiban és a kvantuminfor-
maci6 elméletben [45] [46]. A kvantumos bolyongéasok megfelel6 modellt jelentenek szamos fizikai jelenség
lefrasara, tobbek kozott a kvantumos transzport [39-41], [44], szoras [32, [170) [I71] és a szilardtestekben
tapasztalhato topologikus effektusok [57H60] tanulméanyozéasara. A kvantuminformécié-elmélet szempont-
jabol a kvantumos bolyongasok univerzélis szamitasi primitivet jelentenek [54, 55]. Egyszertiségiik és a
potencialis alkalmazasok ugrasszertien gyarapodo6 szama hamar felkeltette a kisérleti fizikusok figyelmét
is. Kvantumos bolyongasokat imméron a fizikai rendszerek széles csaladjaban sikeriilt demonstralni, a

csapdéazott ionokon [I12] 113] és atomokon [110, I11] keresztiil a fotonikus rendszerekig [I15H124].

Jelen disszertacié gerincét a diszkrét ideji kvantumos bolyongés adja alfejezet), mely a klasszikus
véletlen bolyongas egy nemtriviélis kiterjesztése. Itt a nemtrivialitast az tigynevezett érmetér bevezetése
okozza, mely egy belst szabadsagi fokhoz tartozé Hilbert tér, igy e definici6 a klasszikus véletlen bolyon-
gasok skalarsagat bontja fel. A bolyongésok idéfejlédését unitér dinamika irja le, emiatt alapvet&en zart
rendszernek tekinthetGek. Valojaban a természetben lezajlo folyamatok az esetek tulnyomo tobbségében
valamilyen zaj hatasanak vannak kitéve, mely megzavarhatja a zart kvantumrendszerek unitér idéfejls-
dését, nyiltrendszer dinamikat eredményezve. A jelen disszertacidban targyalt kvantumos bolyongésok

mindegyikének dinamikajat valamilyen médon megzavarjuk.

Az altalunk vizsgalt els6 modellben a bolyongas ,lépés" miiveletét zavartuk meg egy klasszikus vélet-
lenszertiség okozta zajjal (Lasd [ fejezet). Ezt a zajt a bolyongas grafjanak dinamikus perkolaciojaval
irtuk le. E probléma tanulmanyozéasédnak érdekében a véletlen unitér miiveletek (Léasd fejezet) alta-
lanos aszimptotikus elméletének eszkozeit hasznaltuk fel, mikozben azokat a cél és a jobb fizikai ralatas

érdekében tovabbfejlesztettiik.

A kvantumos bolyongasok unitaritasanak megtorésére a kvantummechanika egy természetes modot is
kinal: a mérés sziikségszertien megzavarja az unitér dinamikat. Gyakori (periodikus) szelektiv mérések egy
kvantumallapotok kozott zajlo sztochasztikus folyamatot eredményeznek. Egy ilyen folyamat informacio
produkcidjat vizsgaljuk meg a klasszikus informéciéelméletben talalhaté entropia-rata mennyiségének

segitségével. Mivel a klasszikus véletlen bolyongasok jelentik az entrépia-rata iskolapéldajat, reményeink
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szerint a kvantumos bolyongasok entropia-ratajénak meghatérozasa és a két modell Gsszehasonlitésa
ravilagithat az egyszerd klasszikus és kvantumrendszerek kozotti alapvetd kiilonbségekre, ezzel elarulva

valamit a rejtélyes klasszikus-kvantum hataratmenetrsl.

Altalanos moédszer a perkolacios kvantumos bolyongasok aszimptotika-

janak meghatarozasara

Az els§ altalunk vizsgalt rendezetlen rendszer a perkolacios grafon torténd diszkrét idejid bolyongas
volt. Ebben a modellben a bolyongés grafjanak minden éléhez egy véges valdszintiséget rendeliink, mely
azt irja le hogy az adott él milyen valdszintséggel valik ,hibassa" egységnyi idGlépés alatt. A ,hibas"
éleken a bolyongas nem tud atlépni az adott idépillanatban. A perkolacios (zajos) grafokon valo diszkrét
idejd bolyongas leirdsa nem trividlis feladat, mivel a perkolacié6 miatt a graf regularitasa is séril. E
probléma feloldasara mi egy irodalomban ismert moédszert valasztottunk: a bolyongas unitaritasat egy
visszaverédés (reflexio) bevezetésével megtartjuk. Mivel a bolyongés egy hibas élen nem tud atmenni,
ezért helyette a bels§ érmeallapotaban torténik egy reflexio (Léasd . alfejezet). Egy ilyen rendszer
teljes, sztochasztikus idéfejlédését egy véletlen unitér leképezés (RUO) irja le, mely konstrukcioja miatt

egy trace-meg6rzs kvantummtvelet (kvantumecsatorna).

Az ilyen RUO leképezések aszimptotikdjanak meghatérozasat leiré elméletetet adaptaltuk a perko-
lacios kvantumos bolyongas problémajara (Lasd . alfejezet.). Ebben az elméletben a legfontosabb,
nélkiilozhetetlen 1épés az tigynevezett attraktortér megkonstrualasa, mely a RUO leképezés egy invaridns
altere. Megmutattuk, hogy a diszkrét idejii kvantumos bolyongasok operatorszorzattal adott dinamikéja
miatt az érméhez tartozo és a léptets operatorhoz tartozo részek (utobbi a graf topologiajanak is meg-
felel) szeparalhatoak és kiilon oldhatoak meg. Az érméhez tartozd egyenleteket ,érme feltételeknek" a
léptetGoperatorhoz tartozo részeket ,léptets feltételeknek" neveztiik. A szeparacios technika segitségével
ezek a részek kiilon paraméterezhetGek, igy lehetGséget adva a minél altaldnosabb problémék megoldé-
sara. Megmutattuk, hogy transzlacidinvarians regularis grafok esetére a léptets feltételek szémottevéen
leegyszertisodnek, lehetévé téve azt, hogy a graf mérete paraméterként szerepeljen a megoldasban (5.4]
alfejezet). Itt fontos megjegyezniink, hogy az attraktor-tér fiiggetlen a RUO leképezés konstrukcidjakor
felhasznalt valoszintiségektsl egészen addig, mig a felhasznélt unitér operatorok halmaza nem valtozik.
Emiatt az attraktorokban (aszimptotikiban) fazisatalakulasok vagy a rovid tava dinamika jelei nem

figyelhetSek meg.

AlapvetSen a perkolacios grafok probléméjanak mérete exponencidlisan névekvs a kovetkezs érte-
lemben: Az idéfejlsdést megadd RUO leképezés unitér miiveletek silyozott Gsszeadasanak eredménye.

Ezen unitérek szama a lehetséges graf-konfiguréciok szaméval megy, mely exponencilis az élek szaméval.
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Megmutattuk, hogy mivel a kvantumos bolyongasok csak legkozelebbi szomszéd 1épéseket (interakciokat)
tartalmaznak, ezért az unitérek ritka matrixok és ebbdl kifolydlag a RUO leképezéseket leird szuperope-
ratorok polinomialis id6 alatt megkonstrualhatoak (lasd alfejezet). Itt megjegyezziik, hogy munkank
soran rendszeresen hasznaltunk numerikus eszkézoket analitikus eredményeink ellendrzésére és abrak raj-
zolasara, igy a polinomiélia konstrukcié eredményét gyakorlatban is felhasznéltuk és igen hasznosnak

talaltuk.

Osszefoglalva, az . fejezetben bemutatott Gj eredményeink a kovetkezdk. Sikerrel alkalmaztuk a
RUO leképezések aszimptotikus elméletetét perkolacios kvantumos bolyongésokra. Megmutattuk, hogy
érme-léptetés szeparicidé hajthato végre, mely segitségével a probléma részekre oszthatd és részenként
oldhato meg. E megkozelités segitségével altalanosabb problémék oldhatdéak meg. Megmutattuk, hogy a
Jéptets feltételek" (melyek a léptets operatornak felelnek meg) szamottevSen leegyszertisodnek transz-
laciéinvarians reguléaris grafokon, igy hozzajarulva ahhoz hogy grafok teljes csalddjat tanulményozzuk
egyszerre. Tovabba megmutattuk, hogy a RUO iddéfejlédést leird szuperoperatorok a graf méretével po-
linomialisan skalazddo erdforrast felhasznalva megkonstrualhatoak regularis grafokon. Ez egy kiilondsen
hasznos eredmény, hiszen a konfiguraciok szama exponencialisan né a graf méretével, igy a ,nyers erg"

(brute force) numerikus modszerek csupan igen kis rendszerek tanulméanyozasat tennék lehetGveé.

Tiszta allapot ansatz a véletlen unitér mitiveletekben

A véletlen unitér mtveletek (RUO) aszimptotikdjanak meghatérozasa az tgynevezett attraktor-tér
megkonstrudlasan keresztiil torténik. Eme invaridns alteret a dinamika fixpontjai feszitik ki, melyeket
attraktoroknak neveziink. Ezeket az attraktorokat tekinthetjik a RUO leképezés (mint szuperoperator)
egységnyi abszolutértékii sajatértékeihez tartozo sajatoperatorainak (sajatvektorainak). Fontos megje-
gyezniink, hogy ezen feliil az attraktorok fizikai alakjara, jelentésére nincsenek megkotések. Valojaban
a teljes attraktortér egy linearis tér, melyen beliil talalhato a tényleges aszimptotikus allapotok (melyek
stirtiségoperatorok) konvex tere. Tomoren megfogalmazva, a RUO leképezések alfejezet) aszimpto-
tikdjat megado altalanos elmélet kevés tampontot ad, ha valaki az attraktorok kézvetlen fizikai jelentésére
vagy értelmezésére kivancsi. Megjegyezziik ezen feliil, hogy mivel az attraktorok linearis operatorok a
Hilbert téren ezért az 6§ méretiik négyzetesen novekszik a Hilbert tér méretével, emiatt analizisuk er&for-

rasigényesebb szemben egy pusztan tiszta allapotokra szoritkozo analizissel.

Ebben a részben az attraktorok fizikai alakjanak kérdését tiiztiik ki célul, mikézben az analizist sikeriilt
lényegesen egyszertibbé tenniink: bevezettiik a ,tiszta allapot ansatz"-ot (6.1} alfejezet). A RUO leképe-
zés megkonstrualasakor felhasznélt unitér operatoroknak kozos sajatallapotaik lehetnek: tiszta allapotok,

melyek minden RUO-t alkot6é unitérnek sajatallapotai ugyanazzal a sajatértékkel. Megmutattuk, hogy
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ezek az allapotok a RUO-val lefrt idéfejlédés fixpontjai, emiatt belSliikk egy rangt attraktorok épithetGek.
Ezeket az attraktorokat p-attraktoroknak neveztiik el. Ezen felil a kdzos sajatallapotok egy dekoherencia-
mentes alteret feszitenek ki, mely altér az attraktor-téren beliil talalhato, és valodi fizikai jelentéssel bir.
Meg kell jegyezniink, hogy nem minden attraktor konstrualhaté meg a kozos sajatallapotokbdl: a teljesen
kevert allapot (mely a RUO leképezések unitalitdsa miatt megjelend trivialis attraktor) az egyik ilyen
attraktor. Bizonyos relevans esetekben viszont az attraktor-tér teljesen meghatarozhaté p-attraktorok és
az el6bb emlitett teljesen kevert allapot segitségével. Ebben az esetben az aszimptotikus id&fejlédés egy
inkoherens keveréke a p-attraktorok alterén torténd unitér idéfejlédésnek (mely egy dekoherencia mentes
altér) és az eme tér ortogonalis alterére vetitett teljesen kevert allapotnak. Megjegyezziik, hogy ez a
meglepden egyszertien leirhaté aszimptotika kés6bb még el6 fog keriilni némely perkolaciés bolyongas

soran.

Osszefoglalva, egy 1j megkozelitést adtunk meg mely segitségével a RUO leképezések aszimptotikus
attraktor tere meghatarozhato (@ fejezet). E megkozelités alapja a RUO leképezést felépitG unitér ope-
ratorok kozos sajatéllapotainak megkonstrualasa. Ezen sajatallapotok megkeresése szamottevGen egysze-
riibb, mint a RUO leképezés sajatoperatorainak megkeresése. Az altalunk megadott tiszta allapot ansatz
lehet&vé teszi, hogy az attraktor-tér bizonyos részeihez kozvetlen fizikai jelentést rendeljiink. Példanak
okaért megemlitjiik, hogy a kozos sajatallapotok dekoherenciamentes alteret feszitenek ki. Megmutattuk,
hogy nem minden attraktor konstrualhaté meg tiszta sajatéllapotok segitségével, a RUO-k unitalitasa
miatt mindig megjelend teljesen kevert allapot egy koziiliik. Tovabba azt is megmutattuk, hogy ha az
attraktor-tér tiszta allapotokbdl és a teljesen kevert allapotbol megkonstrualhatd, akkor az aszimptotikus
dinamika igen egyszertien megadhat6, az pusztéan a kozos sajatallapotok terén vett unitér idéfejlgdésbdl

és az e térre ortogonélis altérre vetitett teljesen kevert allapot inkoherens keverékébdl all Gssze.

Egydimenzios perkolaciéos bolyongasok: explicit megoldasok és élallapo-

tok

Az egydimenzios perkolacios grafokon vett kvantumos bolyongasok probléméjanak megoldasa jelenti
az elsd 1épést a nyilt rendszerek egy egész csalddjihoz. Els6 ranézésre a probléma egyszertinek ttinhet: az
egydimenziés kvantumos bolyongasok az irodalomban igen részletesen leirt és megértett rendszerek, és az
e két alapvet§ modell kombinaciéja meglepGen tjszert és érdekes moédon nemtrivialis: az ilyen rendsze-
rek tanulméanyozésa eddig f6ként numerikus vagy fenomenologikus eszkozokkel tortént, melyeket erdsen

bekorlatoz a probléma exponencialis szamitasi igénye (4.2} alfejezet).

A7l fejezetben a perkolacios bolyongasokra megadott altalanos modszeriinket fejezet) alkalmaztuk
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a tiszta allapot ansatz-zal (]§| fejezet) kardltve, hogy segitségiikkel explicit médon megoldjuk a legaltala-
nosabb, SU(2) érmével hajtott kvantumos bolyongasok problémajat perkolacios gytirtn és vonalon. Ezek
az egyszerd egydimenzids grafok a fizikiban gyakran megjelend visszaverd és periodikus hatérfeltételeket
testesitik meg. A problémat explicit médon, zart alakban sikeriilt megoldanunk alfejezet). A leg-
tobb esetben az attraktor teret p-attraktorok és a teljesen kevert allapothoz tartozo attraktor hatarozza
meg, habar specialis (degeneralt) esetekben egy mésik nem-p-attraktor is megjelenhet. Megmutattuk,
hogy az aszimptotika nagyban fiigghet az altalunk véalasztott érmeoperatortol: a teljesen kevert végalla-
pottoél kezdve stacionarius, koherenciat részben megérzé allapotok, illetve periodikus és kvazi-periodikus
hatarciklusok is létrejohetnek. Azt is megmutattuk, hogy a tényleges aszimptotikus dinamika csupéan az
érmetéren figyelhet6 meg, a pozici6 stirtiségoperator mindig stacionérius. Ezek az eredményeink élesen

eltérnek a klasszikus bolyongasoknal mindig fennall6 teljes keveredéstsl.

Megvizsgaltuk tovabba az altalunk talalt kozos sajatallapotok fizikai alakjat. Ezek az allapotok a vonal
grafokon a legtobb esetben (a legtobb érmeoperator esetében) élallapotoknak felelnek meg alfejezet),
azaz exponencialisan lokalizaltak a rendszer hatarain. Ez a megfigyelés néhany érdekes fizikai jelenséget
is maga utan von, példanak okiért a bolyongést egy pozicidban teljesen uniform eloszlasnak megfelels
tisztaallapotbdl inditva a végallapotot exponencialisan lokalizaltnak taladlhatjuk a rendszer egyik szélén.

Ujfent megjegyezziik, hogy az ilyen effektusok klasszikus bolyongasokon nem megfigyelhetGek.

Osszefoglalva, a fejezetben az eddig kidolgozott moédszereinket alkalmaztuk, hogy megoldjuk az
egydimenziés perkolacios kvantumos bolyongasok altalanos problémajat. Sikeresen megoldottuk a teljes
SU(2) probléméat két alapvetd egydimenzios grafon, a gytriin és a vonalon, mikdzben a rendszer mére-
tét szabad paraméterként hagytuk. Megjegyezziik, hogy ezek az eredmények a perkolaciés kvantumos
bolyongasokra kiszamolt elsé analitikus, zart alaki eredmények kozé tartoznak. Megmutattuk, hogy a
lehetséges aszimptotikus viselkedések eléggé sokszintiek lehetnek: a klasszikusan is elérhetd teljes keve-
redéstsl kezdve stacionarius, kvantum koherenciat megérzé allapotok és hatarciklusok is kialakulhatnak.
Tovabba megvizsgaltuk ezen aszimptotikus megoldéasok fizikai alakjat és azt taldltuk, hogy a vonal gra-
fon a legtobb érmeoperatorra élallapotok (a rendszer szélein megjelens exponenciélis lokalizalt tiszta

allapotok) jelennek meg.

Kétdimenziés perkolacié bolyongasok: szimmetriasériilés és csapdazas

Az egydimenzios probléma teljes megoldasat kovetGen természetes tovabblépés egy magasabb dimenzio
probléma megvizsgalasa. Méar a zart (unitér) kétdimenzios kvantumos bolyongasok (|1.1.2, fejezet) is
sokkal érdekesebb jelenségeket mutathatnak az egydimenziés modellhez képest. Ilyen jelenségekre egy

kivalé példa a Grover csapdazas (lokalizacio). Hasonképpen a kétdimenzios perkolacios grafok elmélete
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sokkal tobb kihivast és relevans problémét rejt.

Az egydimenzits esettel analég médon a fejezetben az altalunk megadott altalanos modszert és
tiszta allapot ansatz-ot hasznaltuk hogy a kétdimenziés bolyongésok néhany érdekes esetét analitikusan
megoldjuk. A két legnépszertibb kétdimenzios bolyongast valasztottuk: a Hadamard és a Grover bo-
lyongast. Az analizisben a bolyongas grafjaként kétféle véges négyzetracsot vettiink: a szényeg grafot,
mely a visszaverd hatarfeltételeknek felel meg és a toruszt mely a periodikus hatarfeltételeknek felel meg.
Mindegyik esetben a graf méreteit szabad paraméterként meghagytuk. A Hadamard bolyongéasra kapott
megoldas (Sec. az egydimenzios megfelel6jéhez képest szamos eltérést mutatott: Mialatt az egydi-
menziés Hadamard bolyongés mindig sik pozicideloszlast erdeményez aszimptotikusan (tehéat nincsenek
élallapotok), addig a kétdimenziés modell mutathat pozicié inhomogenitast. Azt is megmutattuk, hogy
ezek az inhomogén megoldéasok (tiszta sajatallapotok) érzékenyek a graf orientaciojara. Mig egyes esetke-
ben az unitér Hadamard bolyongés az M x N és N x M grafokon pusztan egy elforgatott pozicideloszléast
eredményez, a perkolacios valtozatban ez a fajta szimmetria sériil: az eloszléas teljesen megvaltozik.

A Grover bolyongasra kapott megoldasban (Sec. véges tartoju kozos sajatallapotok egész sere-
gét talaltuk. Ezek az allapotok felelnek a csapdazas (lokalizacio) megjelenésért az unitér (zartrendszer
dinamikat kovetd) esetben, de meglepé moédon megjelennek a perkolacios esetben is. Ebbdl kifolyolag a
csapdazas jelensége tuléli a dinamikus perkolacié jelentette erés dekoherenciat. Ezek az allapotok deko-
herenciamentes alteret feszitenek ki, és véges tartojuk miatt a graf méretére vagy hatéarfeltételeire sem
érzékenyek: a gyakorlatban informéaciotarolasra is alkalmasak lehetnek. Egy ilyen nagy dekoherencia-
mentes altér megjelenése szamunkra nem vart eredmény volt. A véges tartoju sajatallapotok a csapdéazas
definiciojara vonatkozo kovetkezményeit is atgondoltuk: az irodalomban a csapdézast (lokalizéciot) alta-
laban tgy definidljak, hogy a részecske megtalalasi valoszintisége a kezdeti helyén a teljes id6fejlédés alatt
nagyobb mint zérus. Ez a definicié viszont nem alkalmazhat6é megfelelGen véges grafokon. Javaslatunk
szerint a robusztus, véges (exponencialisan lecsengé tartojia) sajatallapotok megjelenése a csapdazas egy
jobb indikatora lehetne, mivel az a graf méretére és hataraira érzéketlen. Megjegyezziik, hogy mind
a Hadamard mind a Grover bolyongésok olyan RUO leképezések ahol a tiszta allapot ansatz igen jo
eredménnyel alkalmazhaté: a teljes attraktor-tér meghatarozhatéd a kozos sajatallapotok segitségével de-
finialt attraktorokkal (p-attraktorok) és az egyetlen trivialis nem-p-attraktorral mely a teljesen kevert
allapotnak felel meg.

A fejezet eredmeényeit Osszefoglalva: Alkalmaztuk az altalunk javasolt analitikus modszereket,
hogy két népszeri kétdimenziés kvantumos bolyongast vizsgéljunk perkolacios grafokon. ElGszor a kétdi-
menzidés Hadamard bolyongast analizaltuk és adtuk neg zart alakban attraktorait. Megmutattuk, hogy
szemben az egydimenzidés Hadamard bolyongassal itt inhomogenitas is felléphet. Tovabba megmutattuk,
hogy a perkolaciés modell érzékeny bizonyos elforgatasokra, az unitér modell bizonyos szimmetriai sériil-

nek. Megvizsgaltuk a Grover bolyongast is, melynek szintén meghataroztuk az attraktorait zart alakban.
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Megmutattuk, hogy a Grover bolyongésra jellemz§ csapdézasi jelenség megtaladlhaté a perkolacios mo-
dellben is. E jelenség tulélése a véges tartdju kozos sajatallapotok megjelenésének koszonhets, melyek egy
dekoherenciamentes alteret is kifeszitenek. Ezen allapotok megjelenése miatt a csapdazés definiciojanak

kiterjesztését javasoltuk.

Az entropia-rata kiszdmitasa kvantumos bolyongas alapt stochasztikus

folyamatokban

A kvantummechanikai rendszereket tobbféle moédon is megzavarhatjuk. Eddig egy olyan rendszert tar-
gyaltunk, ahol a rendezetlenséget a kornyezetbdl érkezd zaj okozta. Itt egy masik megkozelitést fogunk
megvizsgalni, melyben a rendszert periodikus szelektiv mérésekkel zavarjuk meg. A kiévetkezd kérdést
tehetjiik fel: mennyi kvantumossagot mutat egy olyan alapvetGen zart rendszer melyet rendszeres mé-
réssel zavarunk meg? Ezt a probléméat a rendszerbdl kinyerhetd informacio (rendezetlenség) tiikrében
vizsgaljuk meg a klasszikus informaciéelméletbdl ismert entropia-rata eszkozével fejezet). A klasszi-
kus informaciéelmélet szemszogébdl nézve az entropia-rata egy stochasztikus folyamat aszimptotikus
szimbo6lumonkénti informaciétartalmat irja le. Mivel az entrépia-rata egyik iskolapéldaja a klasszikus
véletlen bolyongéas, kézenfekvének tiinik hogy a kvantumos bolyongasok entrépia-ratdjanak probléméjat
megvizsgaljuk.

Mivel a klasszikus entropia-rata rendelkezik egy megfelel§ operacionalis és fizikai jelentéssel, a prob-
lémat a klasszikus informécidéelmélet hatarain beliil vizsgaltuk meg. Ehhez a klasszikus vagy kvantumos
bolyongasokat egy fekete dobozba rejtettiik alfejezet), és ehhez rendeltiink egy stochasztikus folya-
matot. Ezt a diszkrét ideji kvantumos bolyongasok esetén a periodikus pozicié6 von Neumann méréssel
definialtuk alfejezet). Az entropia-rata alapdefiniciojat felhasznalva sikeresen megadtunk egy mod-
szert a rendszer entropia-ratdjanak kiszdmitasara. Szemben a klasszikus bolyongasokkal, melyek Markov
lancok, a vizsgalt diszkrét idejd bolyongés nem tekinthetd klasszikus Markov folyamatnak a pozicié mérési

eredményeken, habar maga a bolyongés egy kvantumos Markov lanc.

Megmutattuk, hogy a belsé érmeéllapot a poziciomérések utan is megériz némi koherenciét, igy egy-
fajta memoriaként mikodik. Tovabbé azt is megmutattuk, hogy a rendszer kvantumos Markov lanc
tulajdonsaga kihasznalhat6: az aktualis érmeéllapot, s6t, a rendszer teljes kvantumallapota rekonstru-
alhatd a poziciomérések kimeneteleibsl. Ez lehetévé tette szamunkra, hogy a modell entréopia-ratajat
egy érmeallapotokra is kiterjesztett klasszikus Markov lanc entropia-ratajaként szamitsuk ki alfeje-
zet). Tovabba azt is megfigyeltiik, hogy a rendszer entropia-rataja nem fiigg a kezdeti allapottol, tehat
a rendszer aszimptotikusan mindig elfelejti kezdeti allapotait. Mivel az érmeallapotok szama végtelen is

lehet, ezért egy az érmedllapotok vagasan alapuld kozelitd modszert is megadtunk (9.5 alfejezet), mely
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segitségével a rendszer entropia-ratajanak egy also és fels6 hatara is kiszamithato. A megadott mod-
szerek lehetévé tették, hogy meghatarozzuk a stirtin mért kvantumos bolyongéasok entrépia-ratajat és
Osszevessiik azt a stirtin mért klasszikus bolyongésokéval. Azt talaltuk fejezet), hogy az érmeallapot
mint implicit memoria megjelenése miatt a stirtin (gyakran) mért egydimenzios Hadamard bolyongasok

entropia-rataja tipikusan kisebb mint a megfelel§ klasszikus bolyongasoké.

Osszefoglalva a - . alfejezeteket, elGszor egy stochasztikus folyamatot rendeltiink a periodiku-
san mért kvantumos (és klasszikus) bolyongasokhoz. Egy részletes modszert adtunk meg a klasszikus
bolyongasok entrépia-ratdjanak kiszamitasara. Megmutattuk, hogy a kvantumos bolyongasok nem te-
kinthetSek a pozicié mérési eredmények kozotti klasszikus Markov lancnak, viszont pozicié-érme bazison
mér annak tekinthetSek. Médszert adtunk meg az entropia-rata also és fels6 hatarainak kiszamitasara a
bézisallapotok vagasaval. Azt taldltuk, hogy a stird mérések esetében az érme memoriaszerd viselkedése
a kvantumos modellben (egydimenzios Hadamard bolyongas) tipikusan alacsonyabb entropia-ratat ered-
ményez mint a megfelel§ klasszikus bolyongésé. Fontosnak tartjuk kiemeleni, hogy az altalunk megadott
modszerek altaldnosak és konnyen kiterjeszthetek magasabb dimenzids bolyongésokra vagy mas diszkrét

ideji kvantumos Markov lancokra is.

Az entrépia-rata skilazédasanak meghatarozasa és osszehasonlitds mas

megkozelitésekkel

A periodikusan mért kvantumos és klasszikus bolyongasok entropia-ratija kiszamithato és Osszeha-
sonlithatd. Azonban ezek a szamitasok rendkiviili moédon komplikalhatta valhatnak, ahogy a mérések
kozotti id6t noveljitk. Valojaban a legrosszabb esetben a probléma exponencialissa valik (9.5 alfejezet)

a megfelels Markov lancok dimenzi6jat (méatrixok méretet) tekintve.

Ezt a problémét elkeriilend6 egy protokollt adtunk meg alfejezet) mely egy konnyen kiszamithato
és mérhetd felss hatart ad meg az entrépia-ratara: Ha valaki a kvantumos bolyongést szigorian klasszikus
Markov lancként kezeli, azaz a poziciok kozotti stochasztikus (dtmeneti) matrixként irja le a mérési kime-
neteket, sziikségszertien egy szuboptimaélis kodolast fog talalni, mely magasabb entropia-rataval tarsul. A
korrekt reprezentécio és a pozicidra szoritkozd reprezenticio kozotti fiiggvénykapcsolatot és a kapcsolodo
entropia-rata egyenlStlenséget a rejtett Markov modellek elmélete szolgaltatja. Megmutattuk, hogy ezen
fels6 hatart jelents entropia-rata kozelithet6 az ugynevezett weak limit elméletek segitségével. Azt is
megmutattuk, hogy az egzakt kiszamitasi mod segitségével akar egy alsé hatarhoz tartézo skalazodés is
kiszamithat6. Minden kvantumos esetben az entrépia-rata log, w-vel skalazodik, ahol w két egymast ko-
vets mérés kozott eltelt id6 (a periodikus mérések periodusideje). Osszehasonlitasképpen, ez a mennyiség

klasszikus bolyongasok esetén %logQ w. A szorzofaktorban megjelend kiilonbség a ballisztikus és diffaziv
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terjedések kovetkezménye. Azt a konkluziot vontuk le, hogy a ritkdn mért hataresetben az entropia-ratat
a rendszerek terjedése uralja, azaz itt a kvantumos valtozat tilszarnyalja a klasszikus megfelelGjét. Véges
rendszereket (gytrt grafokat) is megvizsgaltunk alfeljezet) a modszer segitségével. Azt talaltuk,
hogy ezeken a grafokon a klasszikus bolyongasok teljes keveredést mutatnak, ezzel szemben a kvantumos
rendszer nem-monoton viselkedést mutat az unitaritds miatt: kollapszusok és feléledések (collapses and

revivals) torténhetnek.

Megvizsgaltuk a ,teljesen kvantumos" esetet is (9.7] alfejezet), melyben minden egyes mérést egy 1j,
addig zavartalanul fejl6d6 rendszeren végziink el. Miutan ebben az esetben nincs korrelacié az egymaést
kovets mérések kozott, az entropia-ratat egyszertien a végtelen hataresetig elfejlesztett rendszer pozi-
ci6 eloszlasanak entropidja adja meg. Ez azonban végtelen kvantumrendszereken végtelen, véges kvan-
tumrendszereken viszont nem konvergens az el6bb emlitett kollapszus-feléledés viselkedés miatt. Azt a

konkluziét vontuk le, hogy a ,teljesen kvantumos" eset nem vizsgalhato az entropia-rata segitségével.

Az tgynevezett kvantumos entropia-ratat fejezet) is kiszamitottuk. Ehhez sziikség volt a mé-
entropia-rata definiciojaban taldlhaté Neumann entrépia logaritmikusan né az iteraciokkal, ezért maga a

kvantumos entropia-rata (mely linearis novekedést feltételez) zérus lesz.

A[0:6]-[0-8 alfejezeteket Gsszefoglalando, analitikus eszkozok segitségével vizsgaltuk meg a periodiku-
san mért kvantumos bolyongésokat. A rejtett Markov modellek elméletének segitségével egy egyszertien
kiszamithaté és mérhetd protokollt adtunk meg, mely segitségével az entropia-ratara egy fels6 hatar ad-
hatoé meg. Megmutattuk, hogy az entropia-rata skaldzodésa a mérések kozott eltelt idd fiiggvényében
megadhatd a "weak limit" elméletek segitségével. Arra a kovetkeztetésre jutottunk, hogy a ritka mérések
hataresetében az entropia-ratat a bolyongasok terjedése uralja. Az entropia-rata tiikrében ezek alapjan a
kvantumos és klasszikus rendszerek megkiilonboztethetfek: a stirti mérések esetében az egzakt modszer
segitségével megtalalhatod a két rendszer kozotti finom kiilonbség, mig a ritka mérések hataraban a sokkal
kénnyebben kiszamithato fels§ hatart ado protokoll biztonsaggal vezet eredményre. Szintén megvizsgél-
tuk a ,teljesen kvantumos" esetet is, mely a kvantumos bolyongésok vizsgélatanal igen gyakran el6fordulo
megkozelités. Ebben az esetben az entrépia-ratat nem talaltuk konvergensnek. Végezetiil a kvantumos
entropia-ratat is megvizsgaltuk és azt talaltuk, hogy az minden esetben zérus. Az, hogy az esetek tul-
nyomo részében a megvizsgalt kvantumos modelleknek létezik klasszikus entropia-rataja, azt is magaval
vonja, hogy egy megfelelGen tervezett klasszikus bolyongéassal e rendszerek kimenetei szimulalhatoak.
Ilyen értelemben a kvantummechnaikai tulajdonsagok végig rejtve maradnak a klasszikus informaciéel-
mélet szemszogébdl. Mésrészrél a feltart nem-triviélis jelenségek, mint az érme memoriaszeri viselkedése,

a nem-monoton entrépia-rata és a kollapszusok-feléledések felfedik a bolyongés kvantumos természetét.
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Kitekintés

A perkolaciés kvantums bolyongésokhoz altalunk megadott modszerek jol megalapozott eszkoztarat
biztositanak e rendszerek tanulményozasahoz és megértéséhez. A teriiletet 6vez6 novekvs figyelem és
a gylmolcsoz6 kisérletek tovabb motivaljak eziranya kutatasainkat. A kovetkezd kézenfekvs 1épés més
grafok vagy tobbrészecskés bolyongasok vizsgalata lehet. Lehetségesnek tartjuk, hogy a megadott méd-
szerek és eredmények a kvantuminforméci6 teriiletén is kozvetleniil felhasznalhatoak. Egy masik iranyt
jelenthet a perkoléacid jelenségének vizsgalata masféle kvantumos bolyongas definiciokat hasznalva. Az
el6zetes eredményeink folytonos idejti bolyongasok esetére azt mutatjak, hogy itt is fellépnek nem-triviélis
effektusok, annak ellenére hogy a modell alapvetGen kevésbé gazdag az érmetér hidnya miatt.

A véletlen unitér miiveletek aszimptotikus elméletében kozvetleniil felhasznalhaté a tiszta allapot
ansatz. Az altalanos modszer kiterjeszthets trace nem-megérzd rendszerekre is, azaz forrasok és nyeldk is
bevezethetGek. Igéretesnek ttinhet a tiszta allapot ansatz kiterjesztése ilyen altalanos rendszerekre. Egy
mésik érdekes kérdéskor a konvergencia, hiszen ez bizonyos modellekben igen fontos fizikai relevanciaval
bir, pl.: fazisdtalakuldsok valhatnénak tetten érhetévé.

A diszkrét idejii kvantumos bolyongasok entropia-ratajanak meghatarozésanak kérdéskorét egy kez-
deti 1épésnek szantuk, mely segitségével az entropia-rata és a klasszikus-kvantumos hataratmenet mélyebb
megértését reméljiik. Kézenfekvs tovabblépési lehetGség az entropia-rata kiszamitasa altaldnos kvantumos
rendszerekre és ezen Kkeresztiil a kvantummechanika sajatossagainak felismerése. Egy hasonlé megkdzeli-
tést jelenthet olyan definicidk és mérési eljarasok megadasa ami segitségével egy rendszer kvantumosséga
jellemezhetd valamilyen entropia-réta-szerti mennyiség tiikrében. Ehhez igéretes jeloltnek tiinik az tgy-
nevezett kvantumos dinamikus entropia (quantum dynamical entropy). Azt reméljiik, hogy a téméaban
torténd tovabbi kutatasaink segitségével egy kis betekintést nyerhetiink a klasszikus és kvantumos vilag

kozott hiizodo rejtélyes hatarmezsgyébe.



Uj tudoméanyos eredmények
(List of new scientific results in Hungarian)

1. Altalanos modszert adtam meg a perkolacios diszkrét idejd kvantumos bolyongésok aszimptotika-
janak megoldasira. E modszer a véletlen unitér miveletek attraktor-tér formalizmuséan alapszik,
melyet a diszkrét idejd bolyongasok id&fejlddésének definicidjaban talalhatd érme-1épés operatorok
szerint szepardltam. Megmutattam, hogy a szeparacio segitségével érmék és grafok egész csalad-
jaira oldhaté meg az aszimptotika. Azt is megmutattam, hogy a véletlen unitér dinamikat leird
szuperoperator regularis grafokon a csiicsok szaménak fiiggvényében polinomialisan megkonstruél-
hato [I].

2. Megadtam egy moédszert véletlen unitér miveletek aszimptotikus attraktorainak meghatarozasara.
A modszer gerincét a dinamika kozos sajatallapotainak megtaldlasa jelenti, mely segitségével olyan
attraktorokat lehet konstruédlni, melyek direkt fizikai jelentést hordoznak. Megmutattam, hogy
ezek a sajatallapotok egy dekoherencia-mentes alteret feszitenek ki. Azt is megmutattam, hogy
némely esetben a teljes attraktor-tér megadhatoé a kozos sajatallapotok és a trivialis attraktor
(teljesen kevert allapot) segitségével. Erre az esetre is meghataroztam az aszimptotikus id6fejlédést,
mely a dekoherencia-mentes altéren torténd unitér dinamika és az erre meréleges altérre vetitett
teljesen kevert allapot inkoherens keverékébdl all. Illusztraltam tovabbéa a megadott modszert a
perkolacids grafokon torténd diszkrét idejd bolyongason és ramutattam a kozos sajatallapotokon

alapulo modszer és az altalanos modszer kozotti fontos kiilonbségekre [1I].

3. Explicit médon megoldottam az egydimenzids perkolacios kvantumos bolyongésok aszimptotikajat
az altalam kifejlesztett modszerek segitségével. Zart alakban megadtam az attraktor-tér formulajat
a teljes SU(2) probléméra perkolacios gytird és lanc grafokon. Megmutattam, hogy az aszimptotika
nemtrivialis, kvantumkoherenciat mutaté stacionarius allapotok és hatarciklusok is 1étrejohetnek.
Az aszimptotikus megoldasok fizikai alakjat is vizsgaltam, és felfedeztem, hogy lanc grafokon a

legtobb érme esetében élallapotok lépnek fel [IT1].

4. Perkolacios térusz és szényeg grafokon explicit médon megoldottam a kétdimenziés Hadamard és
Grover bolyongasok aszimptotikus dinamikajat. Megmutattam, hogy a kétdimenziés Hadamard
bolyongés az egydimenzios valtozataval szemben pozicié-inhomogenitast mutat. Azt is megmutat-
tam, hogy a kétdimenzios Hadamard bolyongés a perkolacios esetben elveszti bizonyos elforgatési
szimmetriait. A Grover bolyongés esetén azt talaltam, hogy a kozos sajatallapotok véges tartdval
rendelkeznek, tehat a bolyongas a perkolacios esetben is megtartja a zart rendszerre (unitér eset)

jellemz6 csapdazas jelensegét [I1].
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5. Modszert adtam meg a periodikusan mért kvantumos bolyongasok entropia-ratajanak kiszamitasa-

hoz. Megmutattam, hogy a periodikusan mért kvantumos bolyongasok klasszikus Markov-lancként
viselkednek a pozicié-érmeéllapot bazison és ennek a Markov-lancnak az entrépia-rataja megegye-
zik az el6z6leg definialt sztochasztikus folyamatéval. Ezen entropia-rata fels§ és alsdé hataranak
kiszamitasara is megadtam egy modszert. Sird mérések esetére azt talaltam, hogy a kvantumos
bolyongésok entropia-rataja altalaban alacsonyabb mint a megfelel§ klasszikus bolyongasé, mely

az érmeallapot memoriaszerd viselkedésének kovetkezménye [IV].

. Kidolgoztam egy kozelit§ protokollt, melynek segitségével a periodikusan mért kvantumos bolyon-

gasok entropia-rataja feliilrél kozelithetd, illetve a ritka mérések esetére skalazodasa kiszamithato.
Egydimenziés Hadamard bolyongés esetére kiszdmitottam az entropia-rata skaldzdédasat a mérések
kozt eltelt id6 (diszkrét 1épések szama) fiiggvényében. Azt talaltam, hogy ritka mérések esetében
az entropia-ratat a kvantumos bolyongas ballisztikus terjedése hatarozza meg, tehit az entropia-
rata magasabb mint a klasszikus rendszer esetében. A véges rendszerek esetét is megvizsgaltam,
és azt talaltam, hogy az entropia-rataban kollapszusok és feléledések is megjelenhetnek. Osszeha-
sonlitas céljabol az tgynevezett kvantumos entropiat és a "legkvantumosabb" mérési eljaras esetét
is megvizsgaltam. Azt talaltam, hogy ezek a megkozelitések trivialis eredménnyel szolgalnak, nem
adrulnak el semmit a rendszer kvantumossagarol. Ezzel szemben az altalam megadott klasszikus
entropia-ratan alapulé médszer 6nmagéban alkalmas eszkoz lehet a vizsgélt rendszer kvantumos-

saganak felderitésére [IV].



List of publications

Related publications

[I] B. Kollar, T. Kiss, J. Novotny, 1. Jex, Asymptotic Dynamics of Coined Quantum Walks on Percol-
ation Graphs, Phys. Rev. Lett. 108, 230505 (2012)

[II] B. Kollar, J. Novotny, T. Kiss, I. Jex, Percolation induced effects in two-dimensional coined

quantum walks: analytic asymptotic solutions, New J. Phys. 16, 023002 (2014)

[III] B. Kollar, J. Novotny, T. Kiss, 1. Jex, Discrete time quantum walks on percolation graphs, Eur.

Phys. J. Plus 129, 103 (2014)

[IV] B. Kollar, M. Koniorczyk, Entropy rate of message sources driven by quantum walks, Phys. Rev.
A 89, 022338 (2014)

Other publications

[V] B. Kollar, M. gtefaﬁék, T. Kiss, I. Jex, Recurrences in three-state quantum walks on a plane, Phys.
Rev. A 82, 012303 (2010)

[VI] M. Stefatiak, B. Kollar, T. Kiss, 1. Jex, Full revivals in 2D quantum walks, Phys. Scr. T140,
014035 (2010)

[VII] M. Stefaﬁék, S. M. Barnett, B. Kollar, T. Kiss, 1. Jex, Directional correlations in quantum walks
with two particles, New J. Phys. 13, 033029 (2011)






Acknowlegdement

I would like to thank my supervisor, Tamas Kiss for his guidance throughout my years as a PhD
student at the University of Pécs and the Wigner Research Centre for Physics. I would also like to
thank my unofficial co-supervisor Igor Jex, for his support and encouragement over my frequent visits to
the Czech Technical University in Prague. Without their professional and personal support, and strong
scientific collaboration this work could not have been completed.

I would like to express my gratitude towards all the employees of the Institute of Physics, and Institute
of Mathematics and Informatics at the University of Pécs for their support, especially Matyas Koniorczyk
for the many insightful and stimulating discussions we had.

I thank all the members of the Department of Physics at the Czech Technical University in Prague, for
creating the friendly atmosphere and for making Prague my second home, especially colleguaes Jaroslav
Novotny, Aurél Gabris, and Martin gtefaﬁék, who also dedicated his valuable time to read the manuscript
and add his indispensable suggestions to it.

I would also like to thank all the members of the Department of Quantum Optics and Quantum
Information, Janos Asboth, Péter Adam, Zoltan Darazs, Andras Dombi, Péter Domokos, Andras Gilyén,
Jozsef Janszky, Orsolya Kalman, Zsolt Kis, Laszlo Kecskés, Gabor Konya, Zoltan Kurucz, David Nagy,
Nora Sandor, Péter Sinkovicz, Viktor Szalay, Gergely Szirmai, Géza Téth, and Andras Vukics, whom I
had the opportunity to work with, for creating and maintaining an inspiring and familiar atmosphere.

Last, but not least, I would like to thank my parents, and my dear wife for believing in me, encouraging
me, and providing their loving understanding and support without which I could not have been able to

get this far.






Appendix

A. Entropy rate of one-dimensional Hadamard walk for waiting time

w =2

We show our calculation scheme for the entropy rate of QW driven stochastic process X [Eq. (9:5))],
using the simplest nontrivial example of the one-dimensional Hadamard walk, driven by the coin .
Let us stick to the simplest case, when we initialized the walk in the coin state |L)o at the origin, thus

co = L and w = 2. We apply U? on [)g) = |0, L), resulting in the following quantum state:

1 1

+%|2,R>. (A:1)

This yields some elements of P,_,5 ( see Eq. (9:22)) ):

Pr,r=1/4
Pr, 14 r=1/2
Prop=1/4. (A:2)

We repeat this process again for the newly obtained coin states |R)c and %(—|L>c + |R)c), thus we

apply U? again, and we calculate new elements of the transition matrix P,z as follows:

P rip.r=1

Pr_p=1/4
Pror+r=1/2
Pror=1/4. (A:3)

Note that in this second step, only a single new coin state %(|L> + |R)) appeared. Thus, we apply again

U? on this new state to obtain the following:

PL+R—>R =1. (A4)
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We arrived to a complete coin state circle as no new coin states appeared, thus the P,_,g transition

matrix is complete. In the abstract coin state basis of L, —L + R, R, L + R it takes the form

1210
114000

Popg=— . (A:5)
411012
0040

p(a) is found readily as the left eigenvector of P,_,s corresponding to eigenvalue 1. Expanded in the

same basis as the transition matrix, it takes the form of

1
M(a) = 6 (27 17 27 1) : (A6)
The single step missing is the calculation of the Shannon entropies H(po(9)), which can be done in a

straightforward manner, resulting in the following:

Finally, employing Eq. (9:21)), the entropy rate is

4
oW = 5 bits. (A:8)

In this particular example we restricted ourselves to initial state |L)c. One can repeat the process
for a general initial coin state |co)c = [|L)¢ + r|R)c with |I|? + |r|? = 1. After a more involving but still
straightforward calculation it turns out that the size of P, is still finite in this case, and the entropy
rate is 4/3 bits independently from the initial coin state. Moreover, this result holds true even for any

mixed initial coin states.

We repeat the calculation of entropy rate for w = 2 from initial coin state ¢co = L = (LR) to
demonstrate the refined method using property (9:24). We write the transitions corresponding to the

abstract LR coin state

Prrrr=1/2

PLR—>—L+R:1/2- (AQ)
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Investigating %(ﬂL)C +|R)¢) leads to
P_pyr-r=1, (A:10)
and, hence, we obtain the transition matrix

1 ({11

in the basis of LR and —L+ R. The asymptotic coin distribution z(cr) turns out to be 3(2,1). According
to Eq. (9:24]), the Shannon entropy of LR reads

H (pLr(d)) = H (pr(9)) = H (pr(9)) . (A:12)
Thus, by employing Eq. (9:21)), we obtain
2 T3 its (A:13)

again.

B. Approximating entropy rates of one-dimensional QWs

In the following we demonstrate the approximative method for determining p(«) for the case of w = 2
and ¢g = L(= LR). Here we note that for w = 2 the approximation is not necessary, but it is comparable
with our previous results and it is easier to follow than the w > 2 cases. We restrict ourselves to the

calculation of the exact mapping only for the initial state, thus

Prrorr=1/2

PLr-r+r=1/2. (B:14)
Since we do not wish to calculate further, using Eq. (9:27)) we get the following maps

P ryrsrr=1/2

P_ryrsr=1/2, (B:15)

where we used “?" to mark the set of unknown coin states |?7)¢ which we do not wish to determine (see

Eq. (9:29) ). To build a proper stochastic matrix we need an additional set of rules for the state “?",
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which, again using Eq. (9:27)), are

P ir=1/2

Pryy=1/2. (B:16)

Thus, the transition matrix on the basis of LR and —L + R, 7 is

110
1
Pasp=511011- (B:17)
101

The corresponding asymptotic coin distribution is i(2, 1,1). Using Eq. |D we finish our calculation,

in this particular case Hyax = 3/2 bits and Hyyi, = 1 bit. Thus, the exact entropy rate is in the interval
HIW = 1.3125 4 0.0625 bits (B:18)

which is surprisingly close to the exact 4/3 bits.

We move to the case of w = 3. For convenience, we use ¢o = L(= LR) as the initial state. We apply

U3 on |1)g) = |0, L) resulting in the following:

U|upo) = jg (| =3.L) + ]~ 1)p® (—2\L)c + |R)c)

Thus, we have transitions
PrLrLr =3/8
PLR—>—2L+R:5/8- (BQO)

Continuing with the new, yet undiscovered coin state, we obtain

P oopipsr=1/4
P o1+ rsar—3r=5/8

P—2L+R—>L—2R = 1/8 (BQl)

We end our calculation here and introduce the unknown coin state “?" once again. Using Eq. (9:27]) we
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complete the transition matrix, arriving at

3/85/8 0 0 0
1/4 0 5/81/8 0

Posg=|1/4 0 0 0 3/4 ], (B:22)
1/4 0 0 0 3/4
1/4 0 0 0 3/4

which is written with respect to the basis (LR, —2L+ R,4L—3R,L —2R,?). From here, p(a), po(d) can
be determined readily. With the use of Eq. (9:32)), the entropy rate for the one-dimensional Hadamard
QW is in the interval

HIW = 1.54 +0.08 bits. (B:23)

If we iterate the above procedure further, the interval (uncertainty) shrinks, i. e., the precision of the
entropy rate increases. For 11 iterations the entropy rate of the one-dimensional Hadamard QWs with

w =3 is

HIW = 1.499 + 0.004 ~ 3/2 bits . (B:24)
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