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INTRODUCTION

Introduction

Understanding the interaction of matter and light was the problem which led to the birth of quantum

mechanics a hundred year ago. One of the most important discoveries which burst the frames of

classical physics was the discovery of spectral lines of the atoms. The first model suitable to explain

this observation was by Niels Bohr in 1913: according to his model, only specific orbits of electron

can exist inside an atom with well-defined energies. When jumping between the orbits, the electron

would absorb or emit light corresponding to the energy difference of the orbits. In 1917, as an

extension to Bohr’s model, Einstein introduced the concept of spontenous and stimulated emission

and absorption, with which he created the foundation for the discovery of the laser. However, more

than 40 years was needed for the first realization of this important tool in 1960.

The appearance of lasers, besides having an enormous amount of useful applications in every-

day life, created new directions for the investigations of matter-light interactions, by providing an

intense, monochromatic and coherent light source. One of the important tasks that one may achieve

is a better and better coherent control of quantum states of atoms or atomic ensembles. By now,

this area has become an important and rapidly developing field of quantum optics. On one hand,

atoms are relatively simple systems which are suitable to demonstrate the basic concepts of quantum

mechanics. The significance of such investigations was recently highlighted by the Nobel-prize. On

the other hand, the coherent control of atomic states opens a way for numerous important applica-

tions in various fields of modern physics, including quantum chemistry [1–4], magnetometry [5–9],

trapping and cooling atoms and molecules [10–13], or quantum computation [14–20] and processing

of optical information [17, 21–23]. By coherently preparing the atoms, one can modify the optical

(refractive and absorption) properties of the medium composed of such atoms. As a result, sev-

eral interesting and important nonlinear optical effects may occur or be enhanced, including high

harmonic generation[24–27], multiphoton ionization[28–30], nonlinear frequency conversion[31–34],
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INTRODUCTION

electromagnetically induced transparency[35–38], and many others.

There is a large variety of techniques for the coherent preparation of the atomic states. In the

simplest case of a two-level model atom interacting with a resonant laser pulse, Rabi-oscillation

occurs between the populations of the atomic states. The proportion of the populations in each state

after the interaction depends on the area of the Rabi frequency (integral of the Rabi frequency over

time). For example, if this area equals an odd integer multiple of π, complete population inversion

can be established. However, the process is sensitive even to relatively small variations of the pulse

area and to the resonance conditions between the interacting laser field and atomic transition [39].

This may result in additional difficulties in experiment, especially in the case of multilevel atoms.

More robust control of atomic quantum states (against small-to-medium variations in the pa-

rameters of the laser fields) can be achieved by coherent control schemes based on adiabatic follow-

ing(see [40–42] and references therein). In these cases the control is achieved by adiabatically tuning

one of the parameters of the atom-laser interaction in time, which drives the atomic populations

along the adiabatic states of the system [43, 44]. The most-used schemes of the adiabatic following

include stimulated Raman adiabatic passage (STIRAP) and adiabatic rapid passage (ARP).

In the STIRAP-scheme [40, 41, 45–52] two time-shifted laser pulses having constant carrier fre-

quencies are applied to a Λ-atom, in order to adiabatically change the coupling between the laser

fields and the atomic transitions. As a result, the population of one of the ground states can be trans-

ferred to the other ground state without excitation of the atom, if the pulses arrive in the proper

(counterintuitive) order. With extensions to the STIRAP scheme [53–59], coherence creation among

metastable states of the atom is also possible. The STIRAP-based schemes are advantageous in those

situations where minimizing the excitation of the atom is a top priority to avoid the decoherence

effects caused by spontaneous decay from the excited states. When applying these schemes one needs

to take into account that they are generally sensitive to the two-photon resonance conditions.

In the schemes based on ARP, the detuning between the frequency of the interacting laser fields

and the atomic transitions is changed in time [60]. In case of the Stark chirped rapid adiabatic

passage (SCRAP) schemes[61–66] a far detuned strong laser field is applied to shift the energy level

of the excited state in time via the Stark-effect. These schemes are not sensitive to the resonance

conditions, but the population redistribution process is accompanied by temporary excitation of the

atom.
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INTRODUCTION

Frequency modulated (chirped) laser pulses applied in the atom-laser interaction represents an-

other possibility for performing ARP [67–80]. In this case, it is the frequency of the driving elec-

tromagnetic field(s) that is a key parameter governing the rearrangement of the atomic population

among its quantum states. The investigation of this kind of atomic control has been the main focus

of the group of ”Cold plasma and atomic physics” in the Wigner Research Center of Hungarian

Academy of Sciences, both by experimental [81, 82] and theoretical [12, 70, 73–78, 83–85] methods.

Arrangements using frequency-chirped (FC) pulses have been shown to be suitable for solving several

coherent control problems. A scheme for complete population transfer between metastable states of

a Λ-atom was proposed in [74, 77], and was generalized for creating coherent superposition in the

metastable states of a tripod-atom [78]. It was demonstrated for both cases that by using a sin-

gle FC pulse, adiabatic control can be achieved with negligible atomic excitation, although perfect

population trapping cannot be achieved (like in STIRAP-based schemes). The main advantage of

these schemes is that due to the frequency chirp, they are less sensitive to resonance conditions

and may be successfully utilized in media with both homogeneously and inhomogenously broadened

transition lines. In Λ-atoms another interesting control scheme was demonstrated [73, 75]. Namely,

being initially prepared in a superpositional state, the atoms are transferred into such a population

distribution by two FC laser pulses, that depends strongly on the difference between the initial phases

of the pulses. It was proposed to use this property for mapping the optical phase information into

populations of the atomic states. However, this scheme has the drawback that the process results in

excitation of the atom, inevitably leading to limitation of the information writing and storage times

by the decay time of the excited state.

Being motivated by the above described schemes using FC pulses, one of our goals in our work

was to create a generalized control scheme which may be applied to optical information writing and

storage. In order to broaden the possibilities of controlling the created superpositions, we used three

FC pulses interacting with a tripod-atom instead of one like in [78]. We wished to find arrangements

suitable for, on one hand, on-demand coherence creation in metastable states of the tripod atom and

on the other hand optical information mapping in the population of the metastable states. In order

to avoid the decoherence caused by spontaneous decay and thus to extend the storage time of the

mapped information, we considered the elimination of the atomic excitation as a top priority.

We also investigated control schemes in Λ-atoms including the application of a pulse having
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INTRODUCTION

constant carrier frequency simultanously with a FC pulse which frequency is swept through the two-

photon resonance. We analyzed the schemes of the coherent control of the atomic population in

two cases regarding the one-photon detuning of the constant frequency pulse. We have shown that,

for resonant coupling, a robust coherence-creation is possible between one of the metastable states

and the excited state, which may be applied for high-order harmonic generation or multi-photon

ionization [24, 28, 29, 86–89]. For the far-detuned case, a population transfer occurs between the

ground states in a Λ-atom. However, if the scheme is applied to the Zeeman-sublevels of the D2-line

in 87Rb, coherent superposition between the ground states is also possible due to nonadiabatic effects.

We also proposed the presented scheme for application in an experiment based on Faraday-rotation.

In the above mentioned interaction schemes the coherent control is considered in single atoms

and the back-action of the atoms on the laser fields is neglected, along with propagation effects such

as interaction of the laser pulses with each other. This may be a good approximation in optically

dilute media, but these effects have to be taken into account when we wish to perform a coherent

control in an optically thick medium [90–93]. In this case, preparation of the atoms of a medium in

coherent superposition of the quantum states may significantly modify its optical properties leading

to very interesting and important propagation effects, like electromagnetically induced transparency

(EIT). In the EIT-based schemes (see [35–37, 94] and references therein), an intense laser pulse (of

constant carrier frequency) renders the whole medium transparent for a weak probe pulse in Raman

resonance with the intense one. A nearly lossless propagation was also demonstrated for a single FC

laser pulse in optically thick media consisting of Λ-atoms[91]. The two above mentioned schemes

agree in the point that for even significant propagation distances, basically the same population-

control mechanism is established in the atoms of the extended media, as for a single atom. The

explanation is that the initial preparation of the atoms in the medium in both cases corresponds to a

dark superposition of the ground states. This means that no excitation occurs in the atoms during the

interaction, which significantly reduces the back-action of the atoms on the laser field. On the other

hand, it has been shown that for a sufficiently intense laser pulse pair having constant frequencies in

Raman resonance with Λ-atoms, it is not indispensable that the atoms of the medium are initially

prepared in the dark state: the pulse-pair by itself renders a dark state through the interaction with

the atoms after propagation of some distance in the medium when the envelopes of the interacting

laser pulses become matched to each other [95–99]. In our work we analyzed the propagation of a FC
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pulse pair in an optically thick medium consisting of Λ-atoms in case of Raman-resonant coupling.

We addressed the question whether there is a matching effect for frequency-modulated laser-pulse

pairs? We were interested in investigating the physical mechanism of population dynamics in the

atoms of the optically thick media in the field of the pair of strong FC laser pulses.

This dissertation is organized as follows. In Chapter 1 we briefly summarize those elements of

quantum mechanics and quantum optics which will be applied throughout the work. In Section 1.1,

we overview the models and approximations which is used for describing the time evolution of the

inner quantum state of atoms interacting with quasi-resonant classical laser pulses. In Section 1.2

we introduce a semiclassical approach for describing the propagation of classical laser pulses in an

optically thick medium consisting of few-state atoms. In Section 1.3 we describe the adiabatic

approximation which we use for understanding the underlying physics of the proposed coherent

control schemes. Our results are presented in Chapters 2, 3 and 4.

In Chapter 2, we investigate the interaction of a tripod-atom with three FC laser pulses, two of

them in Raman resonance and the third one out of it. We propose to use this arrangement for, on one

hand, creating a coherent superposition of the ground states of the tripod-atom (Section 2.3) and,

on the other hand for writing and storage of classical phase information in the populations of the

ground states (Section 2.4). The effect of longitudinal and transverse decay processes are analyzed

for both schemes.

The coherent control of atoms using a combination of a FC and a constant-frequency pulse is

analyzed in Chapter 3. We consider two limiting cases. In Section 3.2, we present our numerical

results for the time evolution of the state of an atom interacting with a resonant constant-frequency

pulse and an FC pulse which frequency is swept through both one-photon and two photon resonance.

We show that this scheme is suitable for very robust creation of coherent superposition between one

of the ground states and the excited state of a Λ-atom. In the scheme presented in Section 3.3, the

frequency of the pulses are far detuned from the atomic transition frequencies. We show numerically

that by applying this scheme for 87Rb, a coherent superposition can established between two of its

Zeeman-sublevels.

We analyze the propagation of two Raman-resonant FC pulses in optically thick medium in

Chapter 4. We show by numerically integrating the Maxwell-Bloch equation that the pulse pair

become matched to each other in such a way that they can propagate in the medium without getting
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absorbed and they prepare the majority of the atoms in a certain superposition of the ground states.
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CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

Chapter 1

Interaction of atoms and quasi-resonant

laser fields

In this thesis, we study the interaction of atoms or atomic ensembles with electromagnetic fields.

We put the emphasis on the effect of the interaction on the inner states of the atoms and do not

take into consideration other degrees of freedom (e.g. mechanical motion). The atoms are coupled

to a limited number (one to three) of laser pulses. We assume that the frequency of the regarded

laser pulses are quasi-resonant with some selected atomic transition frequencies and are monotonicly

modulated in a small range (compared to the atomic transition frequency).

It is consistent with the quasi-resonant coupling to describe the atoms by simple quantum systems

of a few dimensions. The interaction of the atoms with the laser pulses are taken into account in a

semiclassical approach regarding the lasers as classical electric fields coupled to the atomic dipoles.

The time duration of the laser pulses is in the order of magnitude of the lifetime of the excited state

of the atoms, or smaller. However, the Fourier spectrum of the pulse envelope is narrow enough to

allow the application of the rotating wave approximation (RWA).

If the atoms form a spatially extended, optically thick ensemble, their back-action on the control-

ling electromagnetic field also have to be considered. The dynamics of the classical field is described

by the Maxwell equations, where the effect of the atoms can be included through the macroscopic

polarization. Consistently with the RWA, we use the slowly varying envelope approximation (SVEA)

to reduce the second-order wave equation to a first order differential equation.

The coupling of atoms by frequency-modulated lasers is a possible method for performing adia-
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CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

batic control if proper parameters are used, which allows a relatively robust control of the atomic

states. These processes are suitable to be analyzed by the adiabatic approximation. In this frame the

physical mechanism can be understood based on the analysis of the eigenvalues and eigenvectors of

the interaction Hamiltonian, without solving the Schrödinger or the master equation for the atomic

state.

In this chapter, we present a short review of the above mentioned methods and approximations.

We also give a brief introduction to the methods of experimental generation of such frequency-

modulated laser pulses for which the assumptions of the theoretical investigations are true.

1.1 Interaction of an atom with quasi-resonant classical elec-

tromagnetic fields

1.1.1 Few-state atom models

The atom-field interaction schemes analyzed in this dissertation are best applicable to alkali atoms,

which possess only one valency electron. The interaction of these atoms with an electromagnetic

field having frequency in the optical range changes the state of this valency electron by transferring

it among the energy-eigenstates. We do not take the mechanical effects of the laser field into con-

sideration, so henceforth we identify the state of the atom by the state of the valency electron inside

the atom. The effect of the laser field on the atom is taken into account through the coupling of its

electric field to the atomic dipole moment operator d̂:

ĤS = ĤA + Ĥdipole = ĤA − d̂ · E (r0) , (1.1)

where ĤA is the Hamiltonian of the non-interacting atom and E (r0) is the coupling electric field at

the position r0 of the dipole. Note that this is a good approximation for coupling lasers in the optical

frequency range, since the typical atomic radius (0.3− 3Å) is less than 1/1000 of the wavelength of

visible light (400-700 nm), so the atom can be regarded pointlike. [100].

The atomic Hamiltonian ĤA has a discrete spectrum known for the real atoms from spectroscopic

experiments, which give a rather complicated level structure. However, for quasi-resonant coupling, a
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CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

radical simplification can be made. Let us consider two energy levels |0〉 and |1〉 with energies of e0 and

e1, respectively, interacting with a quasi-monochromatic field having carrier frequency ω coincident

with the transition frequency connecting the two levels ω01 = (e0 − e1) /~ and moderate power. With

high probability [101], the transition process induced by the interaction takes place between these

two levels, provided that resonant frequencies of other transitions in the atom differ significantly

from the laser frequency. Thus, the interaction can be described in the 2-dimensional subspace[39],

spanned by {|0〉, |1〉}, of the many dimensional Hilbert-space of atomic levels. Accordingly, from the

aspect of the interaction, the atom can be modeled as a ”two-state atom”, which is shown in Fig. 1.1.

Figure 1.1: Level structure of a two-state atom model. The atomic transition is coupled by a laser
pulse with a frequency ω nearly coincident with the transition frequency ω01 connecting the excited
state |0〉 and ground state |1〉

If the interacting electromagnetic field may induce transitions among several atomic levels with

finite probability, then the two-state atom has to be generalized to more complicated level structures.

In this work, we mostly consider atom models with one excited state (with finite lifetime) and two

or three ground states (metastable states with substantially longer lifetimes compared to the upper

state, thus regarded stable). Electric dipole transitions are only allowed between the excited state and

the ground states and forbidden among the ground states. Motivated by the shape of the coupling

schemes, these atom models are commonly called lambda (1.2(a)) and tripod (1.2(b)) atoms.

Therefore, the atomic state in the analyzed cases are described in a three or four dimensional

Hilbert-space as:

|ψS (t)〉 =
N∑
k=0

ak (t) |k〉, (1.2)

where N is the number of the ground states of the model atom. ak (t) is the probability amplitude

of state |k〉, whose time evolution is determined by the Hamiltonian ĤS given in Eq. (1.1) via the

10



CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

(a) Lambda-atom (b) Tripod-atom

Figure 1.2: Level schemes of the atom models generally used in this dissertation. The dipole-allowed
transitions are signed by arrows, which occurs between the excited state |0〉 and the ground states
|k〉, a.) k ∈ {1, 2} and b.) k ∈ {1, 2, 3}. The upper state has a finite lifetime, while the lifetime of
the lower states are approximated to be infinite.

Schrödinger-equation

i~∂t|ψS (t)〉 = ĤS|ψS (t)〉. (1.3)

The Hamiltonian and dipole moment operators for these model atoms reads as

ĤA =
N∑
k=0

~νk|k〉〈k|, d̂ =
N∑
k=1

(d0k|0〉〈k|+H.c.) , (1.4)

where N has the value of 1 for a two-state atom, 2 for lambda- and 3 for tripod-atoms. Note that

ĤA is trivially diagonal in the basis of |k〉, k ∈ {0...N} since these are energy eigenstates of the

atom, while d̂ has only off-diagonal elements, as it has an odd parity being a vector-operator.

In the most of the discussed cases we analyze interaction between atoms and a limited number

of laser pulses in such a way that each atomic transition is coupled by a separate laser pulse. This

gives us more freedom to control the interaction since we are able to manipulate the coupling of

each transition independently by manipulating the parameters of the corresponding laser pulse. This

assumption is valid, on one hand, when the frequency difference of the transitions is large enough

that the probability that one laser pulse couples the other transition is negligible. For example, in

a 85Rb atom, a lambda-atom can be formed by the F = 2 and F = 3 hyperfine levels of the 52S1/2

orbit as ground states and the F ′ = 4 hyperfine level of the 52P3/2 as excited state (for the level

structure see [102]). On the other hand, the separate coupling can be ensured via selection rules: a
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CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

lambda-atom may be realized by an F = 1 → F ′ = 0 transition in an atom interacting with two

laser pulses having circular σ+ and σ− polarizations. For realizing a tripod structure, one have to

include an additional pulse with π polarization.

Consistently with these assumptions, the interacting radiation field can be described by the

following formula:

~E (x, t) =
N∑
k=1

~εkEk (~x, t) cos
(
~kk~x− ωkt− φk (~x, t)

)
. (1.5)

The interacting field is given by the sum of N modes, each of them is characterized by the ~εk

polarization vector, ωk carrier frequency and ~kk wave vector. However, we do not consider perfectly

monochromatic planar waves, but laser pulses with possible frequency modulation. These properties

can be taken into account an envelope Ek (~x, t) and phase φk (~x, t) that change slowly in time and

space, on the timescale of the inverse carrier frequency ω−1
k and the magnitude of the wavelength∣∣∣~kk∣∣∣−1

. We use the exponential representation of the cosine function and, in parallel, we introduce

complex envelopes which incorporate the slowly varying terms

E (±)
k (~x, t) = Ek (~x, t) exp [∓iφk (~x, t)] . (1.6)

Using these complex envelopes, the electric field of the laser radiation reads as

~E (x, t) =
1

2

n∑
k=1

~εk

(
E (+)
k (~x, t) exp

{
i
(
~kk~x− ωkt

)}
+ c.c.

)
. (1.7)

1.1.2 Interaction picture

For the analysis of the impact of the laser pulses on the atom, the values of the energies of the atomic

eigenstates are not needed. Therefore, it is convenient to transform to the interaction picture using

the

Û = e−iĤAt/~ =
N∑
j=0

e−i·ejt/~|j〉〈j| (1.8)
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time-evolution operator, which transforms the state vector as

|ψI〉 = Û †|ψS〉 =
N∑
k=0

Ak (t) |k〉, (1.9)

where Ak (t) = ak (t) eiekt/~ is slowly varying for ∀k ∈ {0 . . . N} and is determined by the Schwinger-

Tomonaga equation

i~∂t|ψI (t)〉 = ĤI |ψI (t)〉. (1.10)

Here ĤI is the interaction Hamiltonian

ĤI = Û †ĤdipoleÛ = −
N∑
k=1

(
d0keiω0kt ~E|0〉〈k|+H.c.

)
, (1.11)

where the transition frequency between states |0〉 ↔ |k〉 has been introduced as

ω0k = (e0 − ek) /~, k ∈ {1, . . . N} , (1.12)

and we used the following expression for the dipole moment operator in interaction picture:

d̂I = Û †d̂Û =
N∑
k=1

[
d0keiω0kt|0〉〈k|+H.c.

]
. (1.13)

We substitute the formula given in (1.7) for the electric field into the Hamiltonian given in Eq. (1.11)

and we take into account the assumption that each of the allowed transitions are coupled by a

separate laser pulse, to obtain the following form for the interaction Hamiltonian:

ĤI = −1

2

N∑
k=1

[
d0k

(
E (+)
k (~x, t) exp {−i (ωk − ω0k) t}ei

~kk~x

+E (−)
k (~x, t) exp {i (ωk + ω0k) t}e−i

~kk~x
)
|0〉〈k|+H.c.

]
. (1.14)

13
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Using this Hamiltonian (Eq 1.14), the following equation of motion is derived for the probability

amplitudes of the state vector |ψI〉 in interaction picture:

∂tA0 (t) =
i

2

N∑
k=1

(
Ω

(+)
k (~x, t) e−iδktei

~kk~x + Ω
(−)
k (~x, t) ei(ωk+ω0k)te−i

~kk~x
)
Ak (t) (1.15a)

∂tAk (t) =
i

2

(
Ω

(+)
k (~x, t) e−i(ωk+ω0k)tei

~kk~x + Ω
(−)
k (~x, t) eiδkte−i

~kk~x
)
A0 (t) ,

k ∈ {1 . . . N} , (1.15b)

where the detuning between the ω0k frequency of the transition |0〉 → |k〉 and the ωk carrier frequency

of the corresponding laser pulse has been defined as

δk = ωk − ω0k, (1.16)

and Rabi frequencies for each dipole-allowed transition were introduced as

Ω
(+)
k =

d0kE (+)
k (x, t)

~
≡ ϑk (~x, t) e−iφk(~x,t) and Ω

(−)
k =

(
Ω

(+)
k

)†
, (1.17)

which characterize the strength of the coupling. Here d0k denotes the matrix element of the atomic

dipole moment operator for the |0〉 → |k〉 transition, ϑk (~x, t) is the absolute value, φk (~x, t) is the

phase of the kth Rabi frequency.

1.1.3 The rotating wave approximation

As it was already mentioned, in our model we consider quasi-monochromatic laser pulses with carrier

frequencies quasi-resonant with the frequency of the transition coupled by them, having slowly vary-

ing envelope functions and moderate intensity. These properties are equivalent with the following

inequalities:

|δk| � ω0k ⇔ ωk ≈ ω0k (1.18a)∣∣∣∂tΩ(±)
k

∣∣∣� ∣∣ω0kΩ
±
k

∣∣ (1.18b)∣∣∣Ω(±)
k

∣∣∣� ω0k, ∀k ∈ {1 . . . N} . (1.18c)

14
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If we take a closer look at Eq. (1.15) taking into account the inequalities (1.18) we can observe that

the time dependence of the probability amplitudes are determined by two terms changing in sharply

separable timescales. This allows us to neglect the terms containing the terms oscillating by the sum

frequencies ωk + ω0k, as they average out on the timescale of the other, slowly varying term. This

approximation, i.e. neglecting the terms oscillating with the sum-frequencies ω0k + ωk is called the

rotating wave approximation (RWA) [39].

In the frame of RWA, the interaction is characterized by the Hamiltonian

ĤRWA = −~
N∑
k=1

{
1

2
Ωk (t) e−i(δkt−kkx)|0〉〈k|+H.c.

}
. (1.19)

1.1.4 Phase transformations

It makes further calculations more convenient if we introduce a new basis on the atomic states using

the following transformation:

V̂ =
N∑
k=1

[
ei(δkt−kkx)|k〉〈k|

]
+ |0〉〈0|. (1.20)

The operator V̂ defines basis vectors that follow the rotation of the coupling electric fields:

{
|0〉V ≡ |0〉, |k〉V ≡ ei(δkt−kkx)|k〉 | k ∈ {1, 2, . . . n}

}
. (1.21)

The Hamiltonian in the new basis is given by (see A.1)

ĤV = −~
N∑
k=1

[
−δk|k〉V〈k|V +

(
1

2
Ωk|0〉〈k|V + H.c.

)]
. (1.22)

In the Hamiltonian (1.22) the frequency modulation of the interacting laser pulses is taken into

account through the time-dependent complex phase φk (~x, t) of the Rabi frequencies (c.f. (1.17)). In

some investigations, it is advantageous to perform another basis transformation by introducing the
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operator

R̂ =
N∑
k=1

[
eiϕk(~x,t)|k〉V〈k|V

]
+ |0〉〈0|. (1.23)

This transformation incorporates the time-dependent part of the complex phase

φk (~x, t) = ϕk (~x, t) + ϕ
(0)
k (~x) (1.24)

into the rotation of the basis vectors, that now reads as

{
|0〉, |k̃〉 ≡ eiϕk(~x,t)|k〉V | k ∈ {1 . . . N}

}
. (1.25)

The advantage of using this basis for describing the interaction is that the Hamiltonian only contains

time dependence in the real part of its elements, which is going to be beneficial when using the

adiabatic approximation (see 1.3). With introducing the time- (and, in general, space-) dependent

detuning

∆k (~x, t) ≡ δk + ∂tφk (~x, t) = δk + ∂tϕk (~x, t) , (1.26)

we obtain the following formula for the Hamiltonian:

ĤR = −~
N∑
k=1

[
−∆k (~x, t) |k̃〉〈k̃|+

(
1

2
Ω̃k (~x, t) |0〉〈k̃|+ H.c.

)]
, (1.27)

with Ω̃k (~x, t) = Ωk (~x, t) eiϕ(~x,t) ≡ ϑ (~x, t) e−iϕ
(0)(~x) (1.28)

being the Rabi frequency (see Eq. (1.17)), with the phase modulation in time excluded (since it is

already incorporated in the rotating basis vectors). Note that the Hamiltonians given in Eqs. (1.22)

and (1.27) equivalently describe the same interaction. Which one should be used, depends on the

problem at hand.
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1.1.5 The classical Rabi-problem

An important example for the quasi-resonant atom-laser interaction consists of only a two-state atom

and one monochromatic laser pulse. This model, which is analytically solvable in RWA, is called

Rabi-model because it is analogous to the problem of a spin in an oscillating magnetic field analyzed

by Rabi [103]. We regard the atom in a fixed location ~x = ~x0 thus we do not need to deal with the

spatial dependence of the electric field.

The Hamiltonian (1.22) applied to this case (suppressing the subscript V) is given by the formula

Ĥ2 = −~
[
−δ|1〉〈1|+

(
1

2
Ω (t) |0〉〈1|+ H.c.

)]
. (1.29)

Here Ω = E (t) d0k/~ is the coupling strength. It slowly varies in the absolute value and has a constant

complex phase, which can always be set to zero in case of one transition. δ is the detuning between

the atomic transition frequency and the laser’s carrier frequency.

We can describe the state of the atom as

|ψ (t)〉 = A0 (t) |0〉+ A1 (t) |1〉. (1.30)

The time evolution of the probability amplitudes is determined by the Schrödinger equation (c.f. (1.10)):

∂tA0 (t) =
i

2
Ω (t)A1 (t) (1.31a)

∂tA1 (t) = i

[
1

2
Ω (t)A0 (t)− δA1 (t)

]
. (1.31b)

As an initial condition we take all the population to be in the ground state: A0 (0) = 0 and

A1 (0) = 1. Eliminating A1 (t) from Eq. (1.31), we obtain the following second-order differential

17
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equation with initial conditions:

∂2
tA0 (t) + i δ ∂tA0 (t) +

1

4
Ω2 (t)A0 (t) = 0 (1.32a)

A0 (0) = 0 (1.32b)

∂tA0 (0) =
i

2
Ω (0) . (1.32c)

For time-independent coupling (Ω (t) = Ω), the differential equation in (1.32) is easy to solve. Taking

the initial conditions also into account, the solution is (see e.g. [104])

A0 (t) = i
Ω

ΩR

e−i δt/2 sin (ΩRt/2) (1.33a)

A1 (t) = e−i δt/2
[
cos (ΩRt/2) + i

δ

ΩR

sin (ΩRt/2)

]
, (1.33b)

where ΩR =
√
δ2 + Ω2. It is customary to refer to this quantity as ”the generalized Rabi frequency”.

Note that at resonance, it coincides with the Rabi frequency defined in Eq. (1.17). The probabilitiy

that the atom is in the excited state |0〉 or in the ground state |1〉 are given by

P0 (t) = |A0 (t)|2 =
Ω2

2Ω2
R

[1− cos (ΩRt)] (1.34a)

P1 (t) = |A1 (t)|2 =
Ω2
R + δ2

2Ω2
R

+
Ω2

2Ω2
R

cos (ΩRt) , (1.34b)

thus there is an oscillation between the ground and the excited state with a frequency of ΩR, see

Fig. 1.3. For a resonant case, namely δ = 0, a complete population inversion occurs for Ωt =

(2l + 1)π, l ∈ Z. This means that a resonant laser ”pulse” which has a steady Rabi frequency Ω0

between t1 and t2 induces a population inversion if θ = Ω0 (t2 − t1) = (2l + 1)π. Notice that in case

of such a pulse, it is the pulse area that determines the transition induced by the pulse. Motivated

by this, let us introduce the pulse envelope area for pulses with time-dependent Rabi frequencies as

θ (t) =

∫ t

−∞
Ω (t′) dt′. (1.35)

Based on Eq. (1.33), we can guess the solution for the differential equations (1.31) for resonant
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Figure 1.3: The population of the excited state |0〉 as a function of Ωt for different detunings. The
probability that the atom is in the excited state oscillates in Ωt. The frequency and the amplitude
of this oscillation changes with the detuning according to Eq. (1.34a).

coupling (i.e. δ = 0). By substituting this pulse envelope area function in the place of Ωt, we obtain

A0 (t) = a0 sin

[
1

2
θ (t)

]
+ a1 cos

[
1

2
θ (t)

]
(1.36a)

A1 (t) = −a1 sin

[
1

2
θ (t)

]
+ a0 cos

[
1

2
θ (t)

]
, (1.36b)

which can be easily proved to be a solution by substituting into Eq. (1.31).

1.1.6 Interaction with the environment: master equation

So far, we have considered the interaction of the laser pulses with a motionless atom as a closed

system. In this frame we regarded atomic levels with an infinite lifetime. This approach may be a

good approximation if the interaction of the atom with the resonant laser field occurs in a shorter

timescale than any other interactions with the environment. These interactions manifest themselves

as relaxation processes. On one hand, there is spontaneous decay from the excited state of the

atom (longitudinal relaxation). On the other hand, interactions such as collisions in a gas or phonon

scattering in a solid can disturb the dipole oscillations of the resonant atom without disturbing its

energy, but causing a decay of the coherences (transverse relaxations). Let us consider for example a

cold atomic gas of Rb atoms. The spontaneous decay time is of the order of 27ns, while the transverse

relaxation time may change in wide range of values depending on experimental parameters such as

the atomic density or the temperature of the atomic cloud.

In this work, these mechanisms are taken into account in a phenomenological way. Namely, we
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use the master equation for describing the atom-laser interaction in which the relaxation processes

are represented by decay rates. The time evolution of the atomic state, described by the density

matrix operator ρ̂, is given by

∂tρ̂ = − i

~

[
ĤV , ρ̂

]
+ ÛΓ (ρ̂) , (1.37)

where [105]

ÛΓ (ρ̂) = −

(
N∑
k=1

Γk

)
ρ00|0〉〈0|+

N∑
k=1

[Γkρ00|k〉〈k| − (γ0kρ0k|0〉〈k|+ H.c.)]+

∑
k 6=l

(γklρkl|k〉〈l|+ H.c.). (1.38)

Here (ρkl = 〈k|ρ̂|l〉) is the matrix element of the density operator in the basis defined in Eq. (1.21). We

have neglected the spontaneous decay from the excited state out of the considered N+1 dimensional

Hilbert space. The longitudinal decay rate from the excited state |0〉 towards state |k〉, k ∈ {1 . . . N}

is given by Γk, the relaxation rates of the coherences is denoted by γij, i, j ∈ {0, . . . N}, where

γij =
1

2

N∑
k=1

Γik +
1

2

N∑
l=1

Γjl + γ′ij, (1.39)

γ′ij being the relaxation rate due to dephasing processes. Substituting the formula for the Hamiltonian

given in Eq. (1.22) into the expression in (1.37), the following set of differential equations is obtained:

∂tρ00 =
i

2

N∑
k=1

(Ωkρk0 − Ω∗kρ0k)−

(
N∑
k=1

Γk

)
ρ00 (1.40a)

∂tρkk =
i

2
(Ω∗kρ0k − Ωkρk0) + Γkρ00 ∀k ∈ {1, 2, . . . n} (1.40b)

∂tρ0k = i

[
n∑
l=1

1

2
Ωlρlk + δkρ0k −

1

2
Ωkρ00

]
− γ0kρ0k (1.40c)

∂tρkl = i

[
− (δk − δl) ρkl +

1

2
(Ω∗kρ0l − Ωlρk0)

]
− γklρkl, (1.40d)

where ∀k, l ∈ {1, . . . N}.
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1.1.7 Scope of the model

In this section we have presented the mathematical formalism to describe the interaction between a

limited number of laser pulses with atoms at a certain fixed location. Let us overview the conditions

upon which the formalism is valid.

• The wavelength of the electromagnetic field is much longer than the atomic size.

• The interacting electromagnetic field consists of laser pulses. These pulses have a carrier fre-

quency quasi-resonant with the transition frequencies of the atomic transitions coupled by them

and an envelope function which may change slowly in space and time.

• The coupling strengths, expressed by the Rabi frequencies, are small compared to the atomic

transition frequency.

• Each atomic transition is separately coupled by one laser pulse.

If the timescale of the interaction is shorter than the relaxation processes in the system, they can be

neglected. In this case, the atomic state can be described by the wave function and the Schrödinger

equation (1.15) determines its time dependence. If the interaction time is comparable or longer

than the relaxation times (both longitudinal and transverse), the time evolution of the atomic state,

represented by the density matrix operator, follows the master equation (1.40).

1.2 Interaction of laser pulses with optically thick medium

So far, we considered the atom-laser interaction from the point of view of the atoms. The Hamil-

tonian (1.22) gives the impact of the electromagnetic field on an atom in a fixed ~x space location.

In this approach the laser fields can be regarded as externally given. However, when our aim is to

describe the atom-laser interaction in a spatially extended ensemble of atoms, the dynamics of the

fields also have to be taken into account. That is, the propagation of the laser pulses is needed to be

described along with the possible back-action of the atoms on them.
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1.2.1 Evolution of the classical laser field in the medium of atoms

We consider the propagation of N laser pulses, given by the electric field in (1.7), in an ensemble

of identical (N + 1)-level atoms, presented in Sec. 1.1. We assume that all the pulses propagate in

the same direction, for example, along the x-axis. We also suppose that the conditions of using the

Hamiltonian (1.22), summarized in subsec. 1.1.7, are fulfilled.

Continuing the semiclassical approach that we followed in the description of the atomic state, we

use the classical Maxwell-equation for determining the evolution of the electromagnetic field:

(
∇2 − ∂2

∂ (ct)2

)
~E (x, t) = µ0

∂2

∂t2
~P (x, t) . (1.41)

Here ~P denotes the macroscopic polarization, which represents the impact of the atoms on the laser

field

~P (x, t) = NTr
{
ρ̂ (x, t) d̂

}
. (1.42)

Here d̂ is dipole moment operator. ρ̂ (x, t) is defined as the average of the density operators of the

atoms located in a small segment [x, x+ δx] of the medium:

ρ̂ (x, t) =
1

N

N∑
i=1

ρ̂(i) (t), (1.43)

with N atoms in a segment. We have previously assumed that each dipole-allowed transition is

separately coupled by one corresponding pulse. Consequently, an independent differential equation

describes the evolution of the electric field

~Ek (x, t) =
1

2

[
E (+)
k (x, t) e−i(ωkt−kkx) + c.c.

]
(1.44)

of each pulse, with the following macroscopic polarization as a source:

~Pk (x, t) = N
(
ρk0ei(ωkt−kkx)e−iω0kt · d0keiω0kt + ρ0ke−i(ωkt−kkx)eiω0kt · d0ke−iω0kt

)
≡ 1

2

(
P(+)
k (x, t) e−i(ωkt−kkx) + P(−)

k (x, t) ei(ωkt−kkx)
)
, (1.45)
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where ρij = V〈i|ρ̂ (x, t) |j〉V is the matrix element of the density operator in the basis (1.21).

1.2.2 Slowly varying envelope approximation (SVEA)

When describing the electric field with the formula given in Eq. (1.5), we have already made the

assumption that the envelope E±k (x, t) changes slowly in time and space compared to the inverse

laser frequency ω−1
k and the inverse of absolute value of the wave vector |k|−1

k , that is

∣∣∇2E±k
∣∣� ∣∣kk∇E±k ∣∣ (1.46a)∣∣∂2

t E±k
∣∣� ∣∣ωk∂tE±k ∣∣ , ∀k ∈ {1 . . . N} . (1.46b)

On the other hand, the condition for using RWA is the characteristic time of the interaction being

significantly longer than ω−1
k . Consequently, the density matrix elements ρij and thus the envelope

of the macroscopic polarization P(±)
k vary also slowly in time, namely

∣∣∂2
tP±k

∣∣� ∣∣ω0k∂tP±k
∣∣ , ∀k ∈ {1 . . . N} . (1.47)

It follows from these assumptions, that the terms of the laser field (1.44) and the polarization vec-

tor (1.42) oscillating with ωk and −ωk have to satisfy separately the Maxwell equation (1.41). Sub-

stituting the expressions in Eqs. (1.44) and (1.42) into Eq. (1.41), we obtain the following expressions

for the terms oscillating with positive frequency (E
(+)
k and P

(+)
k ) in the left (1.48a) and right (1.48b)

side, respectively:

(
∇2 − ∂2

(ct)

)
~E

(+)
k =

{[(
∇2 + 2ikk∇− |kk|2

)
− c−2

(
∂2
t − 2iωk∂t − ω2

k

)]
E (+)
k

}
e−i(ωkt−kkx) (1.48a)

∂2

∂t2
~P

(+)
k =

{(
∂2
t − 2iωk∂t − ω2

k

)
~P(+)
k

}
e−i(ωkt−kkx). (1.48b)

The second order Maxwell equation (1.48) can be reduced to a first order differential equation if we

take into account the conditions given in (1.46b) and (1.47) and only keep the leading terms:

(
∇+ ∂(ct)

)
E (+)
k =

iµ0ω
2
k

2 |kk|
P(+)
k . (1.49)

23



CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

Using the definitions for the Rabi frequency (1.17) and the macroscopic polarization (1.42) we can get

an equation analogous with Eq. (1.49) for the quantities which appear in the master equation (1.40):

(
∇+

∂

∂ (ct)

)
Ωk (x, t) = i

µ0ωkc |d0k|2

2~
Nρ0k (x, t) , k ∈ {1, 2, . . . n} . (1.50)

Here ρk0 (x, t) is determined by averaging the results of the master equations (1.40) which describe the

state of the atoms in the space segment [x, x+ δx] interacting with laser pulses having Ωk (x, t) , k ∈

{1 . . . N} as Rabi frequencies.

1.3 Adiabatic control of atoms

The simplest case of quasi-resonant interaction of an atom with a laser field was presented in 1.1.5.

We have seen that the population transfer process in the atom induced by the laser field is mostly

determined by two parameters of the interaction. On one hand, complete population transfer is only

possible in resonance. On the other hand, the amount of the population transferred between the

states depends on the pulse area (integral of the pulse’s Rabi frequency over time). These properties

of the process represent serious limitations in experimental situations, when the goal is to control

the inner states of the atoms by the laser pulse. However, if the parameters of the interaction are

changed very slowly (adiabatically), a more robust control can be achieved (see for example [40–42]

and references therein).

In this section we overview the theory of adiabatic processes based on [106] and present the most

common examples of coherent control based on adiabatic passage.

1.3.1 The adiabatic approximation

The essence of an adiabatic process is that a gradual change occurs in the external conditions of the

system. In atom-laser interaction this may be realized by very slowly changing the parameters of the

interacting laser field(s) in time. Therefore the H (R(t)) Hamiltonian which describes the interaction

will change very slowly in time through the parameter R (t). The state vector |ψ (t)〉 of the system
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satisfies the Schrödinger equation

i~∂t|ψ (t)〉 = H (R (t)) |ψ (t)〉, (1.51)

The Hamiltonian has instantaneous eigenvectors |vj (R)〉, which satisfy the characteristic equation

H (R) |vj (R)〉 = λj (R) |vj (R)〉. (1.52)

We can represent the general solution of Eq. (1.51) in the basis of the instantaneous eigenvectors as

|ψ (t)〉 =
∑
j

rj (t) eiαj(t)|vj (R (t))〉, (1.53)

where the so-called dynamic phase has been introduced:

αj (t) = −1

~

∫ t

−∞
λj (R (τ)) dτ . (1.54)

The adiabatic theorem states that if R (t) varies sufficiently slowly and the system is prepared

in the initial state |vj (R (0))〉, then the time-dependent state vector remains in |vj (R (t))〉, apart

from a phase factor. Namely, in the adiabatic regime of the interaction rj (t) = rj (−∞) in the

representation of the state vector in (1.53).

Let us give a deeper insight to this statement which refers to the scope of this approximation as

well. Using the representation given in Eq. (1.53), the Schrödinger equation (1.51) leads to

∑
j

[
ṙje

iαj |vj〉+ rje
iαj |v̇j〉

]
= 0, (1.55)

where the indication of the time dependence is suppressed and dot denotes derivation with respect

to time. With the differentiation of the characteristic equation follows that

Ḣ|vj〉+H|v̇j〉 = λ̇j|vj〉+ λj|v̇j〉. (1.56)

Taking the inner product of (1.55) and (1.56) with another instantaneous eigenvector, 〈vk| =
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〈vk (R (t))|, and substituting the result of the latter operation into the former one, we obtain

ṙk =
∑
j

rje
i(αj−αk)〈vk|Ḣ|vj〉 (λk − λj)−1, (k 6= j) . (1.57)

Now let us suppose that the initial state coincides with one of the instantaneous eigenvectors,

|ψ (0)〉 = |vj (R (0))〉, so that rj (0) = 1 and rk (0) = 0 for k 6= j. Then, from Eq. (1.57) follows that

ṙk ≈ ei(αj−αk)〈vk|Ḣ|vj〉 (λk − λj)−1 . (1.58)

For an adiabatic process, the time dependences of 〈vk|Ḣ|vj〉 and (λk − λj) are slow, thus we can have

the following estimation for the probability amplitude of an eigenstate |vk〉 where the system was not

prepared initially, by using exp {i (αj − αk)} ≈ exp {i (λk − λj) t/~}:

rk (t) ≈ −i~
〈vk|Ḣ|vj〉
λk − λj

[
ei(λk−λj) − 1

]
, (1.59)

which is small provided that the rate of variation of H (R (t)) is slow compared to the difference of

the eigenenergies in any t points:

∣∣∣〈vk|Ḣ|vj〉∣∣∣� |λk − λj|~
, (1.60)

which can be regarded the applicability condition of the adiabatic approximation. An analogous,

more easily applicable form of this requirement only contains the eigenvectors and eigenvalues [107]:

|〈v̇k|vj〉| � |λk − λj| . (1.61)

1.3.2 Stimulated Raman adiabatic passage (STIRAP)

Stimulated Raman adiabatic passage is an adiabatic process commonly used in coherent control of

atomic inner states (see e.g. the review papers [40–42] and the other references mentioned in the

Introduction). Generally, the aim of the control in case of STIRAP is to achieve complete population

transfer among the ground states, avoiding excitation of the atom. The transfer process is achieved

by adiabatically tuning the coupling strengths of the dipole-allowed transitions.

26



CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

The classical arrangement of STIRAP is presented in Fig. 1.4(a), a Λ-atom (see 1.2(a)) interacts

with two laser pulses. The two coupling pulses (usually called Stokes and pump pulses) have constant

frequencies which are equally detuned from the corresponding transition frequencies, that is they are

in Raman resonance (this is an essential condition). The atom is initially prepared in one of the

ground states, for example, in state |1〉, which is coupled to the excited state |0〉 by the pump pulse

(Ωp). The initially empty ground state (state |2〉 in our case) is coupled by the Stokes pulse ΩS. The

coupling laser pulses are time-shifted with respect to each other in a so-called counter-intuitive order,

which means that atom is exposed first to the Stokes-pulse and, after a while, to the pump pulse

(see Fig. 1.4(b)). It is important, however, that the two pulses have a significant overlap. Applying

(a) (b)

Figure 1.4: a.) Classical arrangement of stimulated Raman adiabatic passage. The two ground states
|1〉 and |2〉 are separately coupled by the pump and Stokes pulses, which are in Raman resonance.
b.) Counter-intuitive order of the overlapping Stokes and pump pulses. The Stokes pulse ΩS, which
couples the initially unpopulated ground state to the excited state |0〉 comes first, followed by the
pump pulse Ωp.

the Hamiltonian given in Eq. (1.22) for our case, we obtain the following expression:

ĤSTIRAP = −~
[
−∆ (|1〉〈1|+ |2〉〈2|) +

Ωp

2
(|0〉〈1|+ H.c.) +

ΩS

2
(|0〉〈2|+ H.c.)

]
, (1.62)

where ∆ = ωp − ω01 = ωS − ω02 (cf. Eq. (1.16)).

The eigenvectors (often referred to as ”dressed states”) of Hamiltonian (1.62) are

|a+〉 = cos Φ|0〉+ sin Θ sin Φ|1〉+ cos Θ sin Φ|2〉 (1.63a)

|a−〉 = − sin Φ|0〉+ sin Θ cos Φ|1〉+ cos Θ cos Φ|2〉 (1.63b)

|a0〉 = cos Θ|1〉+ sin Θ|2〉, (1.63c)
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where Φ is some function of the Rabi frequencies and detunings which is not relevant in this discussion

and the mixing angle Θ (t) is defined by

tan Θ (t) =
Ωp (t)

ΩS (t)
. (1.64)

The dressed state |a0〉 evolves in a subspace which is perpendicular to the excited state |0〉, thus it can

be applied for transferring the population from the ground state |1〉 to |2〉. Eqs. (1.63c) and (1.64)

reveal how this is possible. For counter-intuitive order of the pulses (see Fig. 1.4(a)), the mixing

angle, which is the adiabatic parameter here, slowly changes between Θ (ti) = 0 to Θ (tf ) = π/2.

Consequently, |a0〉 coincides with |1〉 in the beginning, and with |2〉 at the end of the interaction.

Thus, the required population transfer is achieved provided that the process is adiabatic, for which

the criterion (based on Eq. (1.61)) is formulated as

∣∣∣∣∣Ω̇pΩS − ΩpΩ̇S

Ω2
p + Ω2

S

∣∣∣∣∣� ∣∣λ± − λ0
∣∣ , (1.65)

where

λ± =
1

2

(
−∆±

√
∆2 + Ω2

p + Ω2
S

)
(1.66a)

λ0 = −∆ (1.66b)

are the eigenenergies corresponding to the eigenvectors (1.63).

The expression in Eq. (1.63c) gives a recipe for creating coherent superposition between the

ground state, too. If the two coupling pulses vanish simultaneously, in such a way that

lim
t→∞

Ωp (t)

ΩS (t)
= tanα, (1.67)

then the system evolves along the adiabatic state |a0〉 into cosα|1〉 + sinα|2〉 (fractional STIRAP,

[55]). That is, the created superposition is determined by the proportion of the trailing edges.
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1.3.3 Frequency-chirped (FC) laser pulses

In this dissertation, we concentrate on the interaction of atoms with laser pulses having monotonic

modulation in their frequencies (see Fig. 1.5). This represents another possibility for performing

adiabatic control. In this case, the adiabatic process is governed by the slowly changing detunings

between the frequencies of the coupling laser(s) and the corresponding atomic transition(s).

In order to demonstrate the main population control mechanism which is made possible by using

frequency-chirped laser pulses, we analyze here the simplest case of a two-state atom coupled by one

chirped laser pulse. This interaction can be described by the Hamiltonian (c.f. Eq (1.27))

Hchirp
2 (t) = −~

[
1
2
Ω (t) (|1〉〈0|+ |0〉〈1|)−∆ (t) |1〉〈1|

]
≡ −~

 0 1
2
Ω (t)

1
2
Ω (t) −∆ (t)

 , (1.68)

where (1 0)T was assigned to the excited state |0〉 whose energy is used as reference energy level

and (0 1)T to the ground state |1〉 dressed with the time-varying detuning ∆ (t) (Eq. (1.26)) which

incorporates the frequency-modulation. Ω (t) here denotes the Rabi frequency1, which can be here

assumed to be real without loss of generality. Note that only time dependences are need to be

indicated since we regard the interaction in a fixed location. We assume that the system changes

adiabatically and thus we use the adiabatic states for the analysis. The eigenstates of the Hamiltonian

Hchirp
2 are given by

|v±〉 =

(
−p(t)±

√
1+p2(t)

N±
1
N±

)T
(1.69)

N± =

√
2
√

1 + p2 (t)
[√

1 + p2 (t)± p (t)
]
,

where the parameter p (t) = ∆ (t) /Ω (t) was used. The energies of these adiabatic states are the

eigenvalues of the Hamiltonian:

λ± (t) =
1

2

[
∆ (t)±

√
∆ (t)2 + Ω (t)2

]
. (1.70)

1To be more precise, it is the real part of the Rabi frequency defined in Eq. (1.17). However, in this context we will
refer to it as Rabi frequency, as the time evolution of the complex part φ has been taken care of by the time-changing
detuning.
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(a) (b)

Figure 1.5: a.) Schematic of the two-state atom. The detuning ∆ (t) of the interacting laser pulse
from the transition frequency monotonicly changes in time b.) Time dependence of the Rabi fre-
quency Ω (t) and the detuning ∆ (t). The frequency of the field starts below and ends up above
resonance during the interaction. The strength of the electric field of the laser pulse is plotted with
a black dotted line.

The specific form of the frequency modulation is not important so long as it varies slowly and the

frequency is monotonicly swept through resonance with a large negative to a large positive value of

detuning. (In this context, ”large” is meant compared to the Rabi frequency, we still remain in the

closely resonant regime so the detuning is significantly smaller than the atomic transition frequency.)

This behavior implies that limt→±∞ p (t) = ±∞, which gives the following asymptotic behavior of

the adiabatic states:

lim
t→−∞

|v+〉 = |1〉 lim
t→∞
|v+〉 = −|0〉 (1.71a)

lim
t→−∞

|v−〉 = |0〉 lim
t→∞
|v−〉 = |1〉, (1.71b)

that is, the adiabatic states coincide with the diabatic states in the beginning and at the end of the

interaction with the laser pulses, where we refer to the eigenstates of the non-interaction Hamiltonian

as ”diabatic states”. Naturally this is also true for the eigenenergies (see Fig. 1.6(a)). The adiabatic

energies approach the diabatic energies (which are the eigenvalues of the non-interaction Hamiltonian

and therefor given by the diagonal elements of the Hamiltonian Hchirp
2 ) at early and later times, but

the presence of the coupling Ω (t) prevents their intersection. Namely, the adiabatic energies have

an avoided crossing.

In consequence, if the system is prepared in, for example, the ground state |1〉, it evolves along
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Figure 1.6: a.) Eigenvalues of the Hamiltonian Hchirp
2 . The µ0 and µ1 energies of the diabatic states

|0〉 and |1〉 are plotted with black dashed lines, the adiabatic eigenenergies are indicated with solid
lines. Because of the interaction, the energies of the adiabatic states have an avoided crossing. b.)
Time evolution of the populations of the states |0〉 (red) and |1〉 (blue) when the system follows the
adiabatic state |v+〉. A complete transfer is induced between the ground and the excited state. The
functions Ω (t) = 3 exp (−t2) and ∆ (t) = t were used for calculation.

the adiabatic eigenstate |v+〉, end eventually ends up in the excited state |0〉. Thus, the frequency

modulated laser pulse has induced complete population transfer (see Fig. 1.6(b)). Note that this

mechanism does not depend on the direction of the chirp, adiabatic passage takes place for both

∂t∆ (t) > 0 and ∂t∆ (t) < 0. Furthermore, the population transfer process is not too sensitive to

the resonance conditions: the detuning between the carrier frequency of the laser and the atomic

transition frequency may vary in a range which is swept through by the frequency-chirp. Thus,

the control by a FC pulse can be established in the presence of inhomogeneous broadening, which

represents and advantage compared with the other control schemes.

Adiabaticity condition for linearly chirped laser pulses

The analysis of the system in the frame of adiabatic following is a good approximation only if the

condition of adiabaticity is fulfilled. In our case this condition can be formulated as follows (after

substituting into the expression given in Eq. (1.61)):

1

2
|∂tΩ (t) ∆ (t)− Ω (t) ∂t∆ (t)| �

[
Ω2 (t) + ∆2 (t)

]3/2
. (1.72)
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In the dissertation, we deal with the laser pulses which have Gaussian time dependence in their

envelopes and linear chirp in their frequencies, namely

Ω (t) = ϑ exp

(
− t2

2t2σ

)
and ∆ (t) = βt. (1.73)

Here ϑ is the peak amplitude of the Rabi frequency, tσ indicates the length of the interaction time

and β is the rate of the frequency-modulation, often referred to as the ”speed of chirp”. Substituting

these formulas into Eq. (1.72) we obtain

1

2
e
− t2

2t2σ

(
t2

t2σ
+ 1

)
|ϑβ| �

(
β2t2 + ϑ2e

− t
2

t2σ

)3/2

(1.74)

The left side of the inequality has the maximum value of β ϑ/
√

e at t = ±tσ. If |θ| < |tσβ|, then the

expression in the right side has a global minimum at t = 0 with a value of ϑ3. Thus, we can say that

the process is adiabatic if the following requirements are fulfilled2:

∣∣∣∣ βϑ2

∣∣∣∣� 1 (1.76a)

tσ >

∣∣∣∣ϑβ
∣∣∣∣ . (1.76b)

1.4 Experimental generation of FC pulses

The theoretical work presented in this thesis is motivated by the experiments on the interaction

between FC pulses and cold atoms conducted in our group [81, 82, 108]. In this section we give a few

2The condition (1.76b) is not strict. If |θ| > |tσβ|, the expression

(
β2t2 + ϑ2e

− t2

t2σ

)3/2

has two global minima

at t = ±tσ
√

ln [ϑ2/ (t2σβ
2)], with the value of ϑ3

[
µ−1 (1 + lnµ)

]3/2
, where µ = ϑ2/

(
t2σβ

2
)
> 1 parameter has been

introduced. That is, if µ ≈ 1, the global minima of the difference of the eigenvalues are still in the order of θ3 and
consequently the inequality in (1.76a) is still a good condition for adiabaticity. In the context of this investigation,
the expression µ ≈ 1 may be interpreted as µ < 1 + |β| /ϑ2, which gives a condition for the interaction length (which
is slightly weaker than the one in (1.76b)):

tσ >

∣∣∣∣ϑβ
∣∣∣∣
√

1

1 + |β| /ϑ2
. (1.75)
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examples of the experimental techniques which are capable of creating FC pulses with the required

intensity, chirp and pulse length to fulfill the adiabaticity conditions given by Eq. (1.76).

Unlike femtosecond pulses, where the chirp can be generated using passive elements such as

gratings or a prism pair [72, 109], an active optical element is needed for creating chirped pulses with

a length of at least a few nanoseconds. In the following we outline two, principally different methods,

used to create chirped pulses relevant to this work [81, 82, 108].

1.4.1 FC pulse generation by current modulation and subsequent pulse

shaping

Figure 1.7 is a schematic of a method first proposed by Nebenzahl and Szőke [110], in which frequency

modulated light is generated by mixing a sinusoidal modulation of a few tens of MHz on the drive

current of a free-running semiconductor laser diode. The modulated laser diode current produces

continuous laser radiation with sinusoidal modulation both in the frequency and intensity. To form

a pulse the modulated light is injected into a Fabri-Perot (FP) cavity.

Figure 1.7: Schematic of the generation of chirped pulses using frequency modulated continuous light
that is pulse shaped with a Fabri-Perot resonator.

In the case of a frequency modulation which exceeds the linewidth of the resonator, pulses are cut

from the continuous laser radiation since only the light which is within the linewidth of the cavity

will be transmitted. Fig. 1.8 is a plot of the intensity and frequency of a CP created by the FP

method. As the sinusoidally modulated frequency sweeps through the transmission window of the

cavity within one period, two light pulses are produced in one cycle. However, due to the fact that

the intensity modulation of the light introduced by the current modulation of the laser diode has a π

phase delay with respect to the frequency modulation, the second pulse coming out of the FP cavity

is significantly weaker.

For the particular pulses used in [81], the cavity was tuned to resonance with the |52S1/2, F = 3〉

to |52P3/2, F = 4〉 transition in 85Rb. The finesse and the pass-band of the resonator were 10 and

500 MHz, respectively.
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oscillations in the transmitted light intensity. This occurs when the frequency change of the 
light during the transition time through the FP is larger than the transmission bandwidth of the 
FP interferometer. 

The overall amplitude of the frequency modulation of the generated pulses were 
measured by an other FP interferometer (FP(2), Figure 2.) of 6GHz free spectral range and by 
a grating spectrograph, followed by a CCD camera and a data acquisition system. Provided 
that the frequency modulation is also sinusoidal, the derivative of the modulated frequency 
at the resonance frequency of the FP interferometer gives the chirp of the light pulse 
(See Figure 4.) depending on the bias current. 

The chirp rate was measured also by fitting the pulse shape measured with fast 
photodetector 1 (New Focus #1591) seen in Figure 2. by the Airy function of the transmitted 
light of the FP interferometer. (See Figure 5.). 

 

 

Figure 4. The overall amplitude of the frequency modulation of the generated pulses depending on the 
dc bias current of the free running diode laser. f1 and f2 are the deviations of the 85Rb resonance 
frequency from the lower and upper limit of the overall frequency modulation band. The chirp of the 
laser pulse is the derivative of the modulated frequency at the resonance. 

 

Figure 5. The pulse shape measured with fast photodetector 1, (Figure 2.) fitted by the Airy function of 
the transmitted light of the FP interferometer. The chirp of the laser pulse was calculated from the 
fitting parameters. 

Figure 1.8: Chirped pulses generated by the Fabry-Perot resonator [108]. The frequency and intensity
of the continuous light emitted from the diode laser are plotted in purple and green, respectively.
The black dots visualize measurement data of the radiation after the FP cavity, while the red line is
a fitting function calculated from the Airy transmission function of the cavity.

By using a current modulation of 16.6MHz, laser pulses with a duration of approximately tσ = 5ns

were tailored with an average chirp rate of β = 30MHz/ns, where the center frequency of the laser

was set to the same frequency as the resonator. The peak power transmitted by the resonator

was I = 20mW over a pulse cross-section area A = 0.5mm2, corresponding to an estimated peak

Rabi-frequency of θ ≈ 1.32GHz [111].

Substituting these parameters in the inequalities imposing the restriction on adiabaticity, we get:

β

θ2
=

30MHz/ns

(1320MHz)2
= 0.17 < 1 (1.77)

θ

β
=

1320MHz

30MHz/ns
= 4.4ns < tσ. (1.78)

Consequently, the pulses with these parameters may be used for inducing an adiabatic passage.

Note that the above described method, suitable for creating FC pulses that fulfill the conditions of

adiabaticity, suffers however from drawbacks following from the characteristics of the pulse tailoring.

First, two pulses are created instead of one, which may cause complications in the analysis of exper-

imental data. Second, the time function of the frequency modulation is determined by the relation

of the center frequency of the laser radiation and the resonance frequency of the FP resonator. If

there is difference between the two, the pulse is created from a part of the sinusoidal cycle. Therefore

it is complicated to change the central frequency of the incoming laser field. It may therefore be
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advantageous to use a different method for the pulse tailoring, such as a Mach-Zehnder type intensity

modulator described in the following section.

1.4.2 Creation of FC pulses by a Mach-Zehnder-type intensity modula-

tor

Using a Mach-Zehnder based intensity modulator is a possible alternative for chirped pulse genera-

tion [108, 112]. The schematic of the principle of the device is presented in Fig. 1.9. The continuous

laser radiation enters a Mach-Zehnder interferometer in which a nonlinear crystal (Lithium-Niobate

for example) is placed in each arm of the interferometer.

Figure 1.9: Schematic of the principle of the Mach-Zehnder-type intensity modulator. Two nonlinear
crystals are placed in the two arms of a Mach-Zehnder interferometer, which are driven by an outer
voltage V (t).

Each crystal can be interdependently driven by an external voltage, which causes a change in the

optical path length according to the voltage V (t). As a result, assuming that the input field is split

without loss between the two arms, the output field is given by [112]:

E(t) =
1

2
E0

[
ei(ω0t+γ1·V (t)+ϕ01) + ei(ω0t+γ2·V (t)+ϕ02)

]
, (1.79)

where γ1 and γ2 are the voltage-to-phase coefficients for the two arms, and ω0 is the frequency of

the ingoing laser light. ϕ01 and ϕ02 are the static phases of each arm of which the difference can be

controlled by a bias dc voltage. The ratio of the output power to the input power is determined by

the phase difference of the two arms according to

P (t)/P0 = cos (∆ϕ(t)) , with ∆ϕ(t) = [(γ1V (t) + ϕ01)− (γ2V (t) + ϕ02)] . (1.80)

35



CHAPTER 1. INTERACTION OF ATOMS AND QUASI-RESONANT LASER FIELDS

The time-dependent frequency is given by the derivative of the output phase:

ω(t) = ∂t [(γ1V (t) + ϕ01)− (γ2V (t) + ϕ02)] =
1

2
(γ1 + γ2) ∂tV (t). (1.81)

It follows from the above formulae that the time-characteristic of both the intensity and the

frequency of the output light is controlled by the time shape of the controlling voltage V (t). Using this

peculiarity, laser pulses of a few nanosecond duration and almost monotonic frequency modulation

have been generated [108]. Fig. 1.10 is a plot of the intensity and frequency of a CP pulse created

with the Mach-Zehnder method. The main restraint of this method is clearly seen in this figure.

and calculation series converged to the g1+g2 value which
corresponds to the chirp factor of about 0.7, which was also
obtained in the measurement described in the previous sections.
The results of one example of these measurements and calcula-
tions are shown in Fig. 7. It can be seen from the reversal of the
light pulse shape that what we see here is the interference of a
varying frequency light pulse with a reference beam, since the
pulse intensity itself has only one maximum.

Once the phase shifts of the two paths of the Mach–Zehnder
modulator are known, the frequency evolution of the light can be
calculated using Eq. (6). In Fig. 8 the intensity and frequency
evolution of the pulse obtained in our measurements can be seen.
The chirp value at the plateau of the pulse intensity is relatively
flat and its value is in the range of 50–150 MHz/ns, which is an
optimum region needed for the adiabatic passage experiments on
Rb atoms, according to our earlier investigations [11]. With our
new chirped pulse source we will be able to vary the chirp rate
and repetition frequency, as well as the pulse length indepen-
dently, by applying appropriately shaped drive voltage pulses to
the amplitude modulator. In this way we hope to be able to
achieve higher momentum transfer and determine the optimum
conditions for the adiabatic acceleration technique of ultra cold
atomic ensembles.

5. Conclusion

We have proposed a single electro-optic amplitude modulator
to modulate both the intensity and the phase of the light of a
diode laser to produce frequency-chirped light pulses in the ns
time scale. The integrated property of the Mach–Zehnder type
electro-optic amplitude modulator makes it easy to produce
frequency-chirped laser pulses for cooled atom manipulations.
The intrinsic chirp parameter of the modulator is determined by
generating high order optical harmonics and found to be
a0 ¼ 0.7270.06.
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Output pulse from the amplitude modulator
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Fig. 6. Output pulse (symbols) with the curve fitted to the measurement points

(solid line), and the RF driving pulse (dashed line).

Interference of the chirped pulse with the reference
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Fig. 7. The result of the interference of the modulator output pulse with a CW

reference beam (symbols), with the curve fitted to the measurement points (solid

line), and the RF driving pulse (dashed line).

Characteristics of the chirped pulse from the modulator
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Fig. 8. The main characteristics of the pulse generated by the amplitude

modulator: evolution in time of the intensity (rhombuses) and frequency

(triangles) of the pulse.
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Figure 1.10: Time evolution of the intensity (rhombuses) and frequency (triangle) of the pulses
generated by a Mach-Zehnder intensity modulator [108]

Namely, as the time function of the frequency of the pulse is given by the derivative of the pulse

shape, it is challenging to guarantee the monotony of the chirp during the whole pulse duration.
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Chapter 2

Adiabatic control of tripod-atoms by

three FC pulses

Selective population transfer is an important problem of quantum optics which has been widely

investigated and applied in the last two decades. The main goal is to begin with an atom (or

any quantum system can be modelled by a discrete, few dimensional level structure) prepared in

a specified inner quantum state and, using a certain combination of external laser pulses, force its

internal state into a desired target state.

Among these, interaction schemes based on adiabatic passage (see Sec. 1.3) represent a consid-

erable group. The reason is that they allow efficient control along with relative robustness against

small-to-moderate variations in certain parameters of the coupling field, which is advantageous in

experimental situations. Adiabatic control (AC) can be achieved by very slowly tuning a certain pa-

rameter of the interaction. As we have already seen through some simple examples (in subsecs 1.3.2

and 1.3.3), there are different kinds of AC schemes depending on which parameter is changed in time.

One of the possibilities of performing AC is to apply FC pulses in the atom-laser interaction. The

simplest case of a two-state atom controlled by one FC pulse (see in subsec. 1.3.3) has already been

generalized to solve different population-control problems.

Two, substantially different schemes were investigated in Λ-atoms. In [73, 75] both transitions

of the atom are coupled by separate FC pulses in Raman resonance, that is, the detunings between

the pulses’ frequencies and the corresponding transition frequencies are the same. As a result of the

interaction a coherent superposition of the three (i.e. ground and excited) states is created. The
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(a) (b) (c)

Figure 2.1: Coherent control schemes using one or two FC laser pulses to couple the allowed transition
of an atom having Λ (a. and b. ) and tripod (c.) structure. a.) Two Raman-resonant pulses
separately interact with the atomic transitions, [73, 75]. b.) Both transitions, having different
frequencies, are driven by a single FC pulse, [74, 77]. c.) All the transitions interact with the same
FC pulse. States |1〉 and |3〉 are quasi-degenerate levels, whereas the energy difference ∆ω12 is large
compared to the frequency width of the light pulse (without chirp), [78].

proportion of the probabity amplitudes is shown to be controlled by the difference of the initial phases

of the pulses (referred to as ”relative phase”). This property can be understood based on the fact

that a ”bright” and ”dark” superposition of the ground states are created by the Raman-resonant

pulse pair. The composition of the superpositions depends on the relative phase. Now the ”dark”

superposition is uncoupled from the light so remains unaffected by the interaction, while the bright

superposition if transferred into the excited state, like in a two-state atom. However, because of the

sponaneous decay, the lifetime of the created superposition is restricted by the lifetime of the excited

state which may restrain the applicability of the scheme.

On the other hand, in the schemes presented in [74, 77] both ground states of different energies

are coupled by a single FC pulse. Thus, in contrast with the previous scheme, the detuning of the

pulse from the frequency of the separate transitions is different. Note that this scheme is analogous

of a Λ-atom whose transitions are separately coupled by two FC-pulses out of Raman resonance. In

this case, as it was shown, the population initially trapped in one ground state is driven into the other

ground state by the interaction. Although complete population trapping in the ground states does

not occur like in the STIRAP-scheme (see 1.3.2), the excitation of the atom may be suppressed to be

almost negligible via quantum interference. It is worth noting that, contrary to the two-state case,

the result of the population transfer depends strongly on the direction of the frequency-modulation.

The latter scheme in the Λ-atom was further generalized to a tripod-structured atom interacting

with a single FC-pulse, which couples all the ground states to the excited state. The atom was

39



CHAPTER 2. ADIABATIC CONTROL OF TRIPOD-ATOMS BY THREE FC PULSES

assumed to have a special level-structure with two near-degenerate ground states and the third

ground state with a large energy difference from the energy of the former ones. Here, two dipole-

allowed atomic transitions are coupled in a Raman-resonant and the third one in a Raman-detuned

way. As a result, a dark and bright superposition is formed from the former two states, similarly to the

case of the Λ-scheme mentioned first. The population of the bright state is transferred into the third,

Raman-detuned ground states, likewise in the second Λ-scheme. As a result, coherent superposition

is established among the ground states of the tripod-atom without significant excitation of the atom.

The drawback of the scheme is that the superposition is also determined by properties of the atom

before the interaction.

One possible application of the coherent control of atoms is the storage and processing of optical

(classical and quantum) information. There are numerous methods which are based on electromag-

netically induced transparency (EIT), see [38, 42, 113] and references therein. These kind of schemes

were proposed for storing and studying transverse images in hot atomic vapors [17, 21, 22, 114, 115].

Because the information is being written (mapped) in the coherences of the atomic states, the EIT-

based methods are sensitive to the transverse relaxation processes during the writing and storage

of the information [15, 17, 21–23, 38, 113–119]. In case of classical information , the information

storage times may be substantially increased if the optical information is written into the populations

of the metastable states instead of the atomic spin coherences.

The interaction scheme of the Λ-atom coupled by a pair of Raman-resonant FC pulses (Fig. 2.1(a))

was proposed to be applied for classical information writing. The information was coded into the

relative phase of the coupling pulse pair, which was proven to control the population distribution

created by the pulses. However, the storage time was restricted by the spontaneous decay rate.

In this chapter, we analyze the interaction of a tripod-atom with three FC pulses, two in Raman

resonance and one out of it, with several initial preparations of the atom. Our aim is to unify the

advantages of the three above mentioned schemes. We examine the possibilities of creating coherent

superpositional states among the ground states of atoms. In doing so, we have two priorities. First,

we require that the created superposition is controllable by external parameters such us the intensity

or relative phase of the coupling light pulses. Second, we search for such mechanisms that are

accompanied by only negligible excitation of the atom, in order to avoid spontaneous emission from

the excited state.
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An interaction scheme which fulfills these requirements is suitable for optical information map-

ping, similarly to the Λ-scheme ( [73, 75]). However, if it can be guaranteed that the excitation of the

atom remains negligible, the storage time becomes significantly extended. That is, it is limited by

the lifetime of the ground states instead of the lifetime of the excited state, which means an increase

of several orders of magnitude.

From the point of view of practical applications of coherent control schemes, it is important to

investigate their applicability in real media with inhomogeneously broadened transition lines typical

for atomic gases. Another important question to be addressed is the effect of longitudinal and

transverse relaxations on the efficiency of the schemes. For example, the effect of dephasing was

investigated in [51, 52, 59] in case of STIRAP, and the influence of inhomogeneous broadening was

also investigated in schemes applying FC pulses [74]. Here, we analyze in detail the effect of the

Doppler broadening of transition lines on the efficiency of the transfer mechanism by considering an

atomic gas of tripod-atoms at different temperatures. We also study the possible impact of relaxation

processes on the population control.

2.1 Mathematical formalism for describing the interaction

between a tripod atom and three FC pulses

We consider the interaction of three laser pulses with a tripod-atom (see Fig. 1.2(b)). Each laser

field is acting on the corresponding allowed electric-dipole transition in the atom (between a ground

state |k〉 (k ∈ {1, 2, 3}) and the excited state |0〉). Here, we focus on the effect of the field on the

atomic state and we neglect propagation effects of the lasers. The physical process which we are

interested in takes place in a certain point in space (defined by the location of the atom), thus we

further suppress the space-dependence in the description of the interacting laser fields:

E (t) =
3∑

k=1

Ek (t) cos

(
ωkt+

∫ t

−∞
βt̂ dt̂+ ϕ

(0)
k

)
, (2.1)

where we have assumed an identical linear time variation of the frequencies of all the interacting

laser pulses with a rate of β (c.f. Eq. 1.73). Ek (t) and ωk denote the slowly varying amplitude and

the central frequency of the kth laser pulse, ϕ0
k is a constant phase term.
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We analyze the atomic dynamics in the rotating basis introduced in Eq. (1.21). The interaction is

described in the frame of rotating wave approximation (see 1.1.3) by the the Hamiltonian (c.f. (1.22))

Ĥtripod = −1

2
~

3∑
k=1

(Ωk|0〉|k〉+ H.c.)− ~ [∆ (|1〉〈1|+ |2〉〈2|) + (∆ + δR) |3〉〈3|] . (2.2)

Here Ωk(t) ≡ Wkf (t) exp (i βt2/2) is the time-dependent Rabi frequency (1.17) of the laser pulse

which drives the transition |0〉 ↔ |k〉, which includes the modulation of the phase in time. The

envelope function f (t) is supposed to be the same for the three laser pulses, with (in general,

different) complex amplitudes Wk = |Wk| exp(iϕ
(0)
k ), k ∈ {1, 2, 3}. We regard laser pulses having

Gaussian shape f (t) = exp (−t2/2), where the time is measured in the unit of τp = τL/(2
√

ln 2), τL

being the full width at half-maximum of the pulse (intensity) envelope.

Figure 2.2: Interaction of three FC pulses with a tripod atom. The pulses having Rabi frequencies
Ω1 and Ω2 are in Raman resonance with a common detuning of ∆ and the third pulse is Raman-
detuned from the other two pulses with δR. The interacting pulses have Gaussian envelopes and
linear frequency chirp.

We also assume that the transitions |0〉 ↔ |1〉 and |0〉 ↔ |2〉 are coupled by pulses in Raman

resonance with a common one-photon detuning ∆. In contrast, the third transition is supposed to

be out of Raman resonance, with a two-photon detuning large compared with the transform-limited

bandwidth of the laser pulses: δR � 1/τp.
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2.1.1 Equations of motion

The dynamics of the atomic populations and coherences is given by the master equation (1.37), which

gives the following set of differential equations:

∂tρ00 = − i

2

3∑
i=1

(Ωiρ
∗
0i − Ω∗i ρ0i)− Γρ00 (2.3a)

∂tρkk =
i

2
(Ωkρ

∗
01 − Ω∗kρ01) +

Γ

3
ρkk, k ∈ {1, 2, 3} (2.3b)

∂tρ01 = − i

2
[Ω2ρ

∗
12 + Ω3ρ13 + Ω1 (ρ11 − ρ00) + 2∆ρ01]− (Γ/2 + γ) ρ01 (2.3c)

∂tρ02 = − i

2
[Ω1ρ12 + Ω3ρ

∗
23 + Ω2 (ρ22 − ρ00) + 2∆ρ02]− (Γ/2 + γ) ρ02 (2.3d)

∂tρ03 = − i

2
[Ω1ρ13 + Ω2ρ23 + Ω3 (ρ33 − ρ00) + 2 (∆ + δR) ρ03]− (Γ/2 + γ) ρ03 (2.3e)

∂tρ12 =
i

2
[Ω2ρ

∗
01 − Ω∗1ρ02]− γρ12 (2.3f)

∂tρ13 =
i

2
[Ω3ρ

∗
01 − Ω∗1ρ03 + 2δRρ13]− γρ13 (2.3g)

∂tρ23 =
i

2
[Ω3ρ

∗
02 − Ω∗2ρ03 + 2δRρ23]− γρ23. (2.3h)

Here we assumed, on one hand, that the longitudinal decay rate from the excited state is the

same (Γ/3) towards all three ground states, and, on the other hand, that the transverse relaxation,

caused by other effects than the spontaneous emission, can also be expressed by the same rate γ. The

diagonal elements ρjj, j ∈ {0, 1, 2, 3} of the density matrix are the populations of the corresponding

states; the nondiagonal elements ρkj, k 6= j are the complex coherences between the corresponding

states.
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2.1.2 Coordinate transformation: introducing dark and bright superpo-

sitional states

For further analysis, it is convenient to introduce a new basis using the complex amplitudes of the

interacting pulses as

|b1〉 = e−i∆t
W ∗

2 |1〉 −W ∗
1 |2〉

W12

|b2〉 = e−i∆t
W1|1〉+W2|2〉

W12

|b3〉 = e−i∆t
W3|3〉
|W3|

|b0〉 = |0〉e−i(βt2/2+∆t), (2.4)

which can be obtained from the original rotating basis defined in (1.21) by the transformation

S = e−i∆t
[

(W ∗
2 |1〉 −W ∗

1 |2〉) 〈1|+ (W1|1〉+W2|2〉) 〈2|
W12

+
W3

|W3|
|3〉〈3|+ e−iβt

2/2|0〉〈0|
]
, (2.5)

where W12 =
√
|W1|2 + |W2|2. The phase factor exp {−i∆t} only shifts the reference energy by ~∆

and is introduced in order to simplify the formulas.

The interaction Hamiltonian in the basis (2.4) is given by

Ĥdb = ~f(t) [W12 (|0〉〈b2|+ |b2〉〈0|) + |W3| (|0〉〈b3|+ |b3〉〈0|)]

+ ~ [(βt+ ∆)|b0〉〈b0| − δR|b3〉〈b3|] , (2.6)

where the transformation rule given in Eq. (A.1) was used.

2.2 Analysis of the adiabatic states

First, we analyze the effect of the three FC pulses on the inner state of the tripod-atom by using

the adiabatic theorem (see 1.3). Note that this method gives an approximation for the Hamiltonian

evolution of the system (for parameters that suit to the constraints given in Eqs. (1.76a) and (1.76b))

and it cannot describe the relaxation processes. The deviations caused by the decay processes from

the results of this approximation are discussed in 2.3.4. As we have seen in Sec. 1.3, the adiabatic

approximation allows us to describe the dynamics of the system by the eigenstates and eigenvalues

of the Hamiltonian. Substituting the Hamiltonian given in Eq. (2.6), the following equation follows
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from Eq. (1.52) for the eigenvalues λ = λj:

λ
{
λ (λ+ ~δR) [λ− ~ (βt+ ∆)]− ~2f(t)2

[
λ
(
W 2

12 + |W3|2
)

+ ~δRW 2
12

]}
= 0, (2.7)

and the following expressions are obtained for the corresponding eigenvectors |ak〉:

|a1〉 = |b1〉 (2.8a)

|aj〉 =
~f (t)W12√

Nj

|b2〉+
λj [λj − ~ (∆ + βt)]− ~2f(t)2W 2

12

~f (t) |W3|
√
Nj

|b3〉 (2.8b)

+
λj√
Nj

|b0〉, j ∈ {2, 3, 4} .

Here the normalization factor for |aj〉 is

Nj =

√
~2f(t)2W 2

12 +

∣∣∣∣λj [λj − ~ (∆ + βt)]− ~2f(t)2W 2
12

~f(t) |W3|

∣∣∣∣2 + λ2
j . (2.9)

As it follows from Eq. (2.8), the following relations take place between the components of the dressed

state vector |bj〉, j ∈ {2, 3, 4}:

〈aj|b3〉
〈aj|b2〉

=
λj [λj − ~ (∆ + βt)]− ~2f(t)2W 2

12

~2f (t)2W12 |W3|
,

〈aj|b0〉
〈aj|b2〉

=
λj

~f(t)W12

. (2.10)

2.2.1 Adiabatic paths for positive and negative chirp

The dynamics of the four eigenvalues (quasi-energies) of Ĥdb is shown in Fig 2.3 for positive (from

below to above resonce) linear chirp both for positive and negative values of Raman detuning. In

the former case (δR > 0), the laser pulse out of Raman resonance (Ω3) reaches the single-photon

resonance with the corresponding transition earlier than the pulses in Raman resonance (Ω1 and Ω2),

while, in the latter case (δR < 0), the resonances occur in the reversed order. As can be seen in

Fig. 2.3, in both cases of negative and positive chirp, the eigenenergies λ2 and λ3 coincide with the

energy µ0 of the (diabatic) excited state |b0〉 in the end and beginning of the interaction, respectively.

In this chapter, however, we wish to find such ways of coherent population control in the tripod atom

by the FC pulses which are accompanied with only negligible excitation of the atom. Thus, we only
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(a) (b)

Figure 2.3: Eigenvalues of the Hamiltonian Ĥdb in case of a.) positive and b.) negative values of
Raman detuning δR. The energies µk of the diabatic states |bk〉, k ∈ {0, 1, 2, 3} are plotted in dashed
lines, while the eigenvalues λj, j ∈ {1, 2, 3, 4} are indicated with solid lines. The parameters used
for calculation are W1 = W2 = W3 = 5

√
2 [1/τp], β = 2

√
2
[
1/τ 2

p

]
, ∆ = 0 [1/τp], |δR| = 5/

√
2 [1/τp].

consider initial preparations of the atom which ensure that the dynamics takes place on the subspace

spanned by the dressed states {|a1〉, |a4〉}.

Note that this preparation is different for the cases of positive and negative Raman detuning

(see Fig. 2.4). In both cases, the dark (diabatic) state |b1〉 is also an adiabatic state, since it is

uncoupled from the interaction with the three FC pulses (this is also obvious from the expression

for the interaction Hamiltonian Ĥdb in Eq. (2.6)). Thus, if the atom is initially prepared in |b1〉, it

remains unexcited during the interaction, since this state is perpendicular to the excited state (cf.

with the definition in Eq. (2.4)). On the other hand, for different signs of the Raman detuning,

substantially different behavior follows from the preparation of the atom in the states |b2〉 and |b3〉.

For δR > 0, see Fig. 2.3(a) and 2.4(a), the eigenvalue µ2 coincides with λ2, which means that

the population initially set in the corresponding (diabatic) bright state |b2〉 is adiabatically driven

into the excited state. In the same time, the energy µ3, belonging to state |b3〉 coincides with the

eigenvalue λ4, which tends to the energy µ2, which belongs to the bright superposition |b2〉 of the

atomic ground states. Namely, the population, placed in |b3〉 at the beginning of the interaction, is

transferred into state |b2〉.

However, for δR < 0 (Fig. 2.3(b)and 2.4(b)) the role of the states |b2〉 and |b3〉 is inverted. That

is, it is state |b3〉 in which the preparation leads to excitation of the atom, while the population

prepared in state |b2〉 gets into state |b3〉 as a result of the interaction.
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Figure 2.4: Adiabatic transfer in the tripod atom induced by the three FC pulses in the arrangement
shown in Fig. 2.2 in case of a.) positive and b.) negative Raman detuning. The initial and the final
states of the atom are indicated with black and orange desks, respectively. |bk〉 k ∈ {0 . . . 3} are the
elements of the ”dark-bright” basis defined in Eq. (2.4).

All in all, in order that the atom evolve in the required subspace, we need to prepare it in

c1|b1〉+ c2|b3〉 for δR > 0 (2.11a)

d1|b1〉+ d2|b2〉 for δR < 0, (2.11b)

respectively, with positive chirp in both cases. Here, cj and dj, j ∈ {1, 2} are arbitrary complex

numbers fulfilling the normalization condition of the quantum states.

2.2.2 Suppression of the excitation of the atom

Now let us assume that the atom is prepared according to (2.11), thus, it evolves in the subspace

spanned by the adiabatic states |a1〉 and |a4〉 to end up in some superposition of the atomic ground

states. However, as it follows from Eqs. (2.9) and (2.10), the excited state has a nonzero contribution

in the dressed state |a4〉, which depends on the corresponding eigenvalue λ4. Notice that this quasi-

energy does not depend strongly on the Rabi frequencies and is restricted by the value of the Raman
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detuning δR for both positive and negative values (see Fig. 2.3):

0 ≤ |λ4| ≤ |δR| . (2.12)

Using Eq. (2.12), the relative contribution of the excited state may be estimated as

∣∣∣∣〈a4|b0〉
〈a4|b2〉

∣∣∣∣ ≤ ∣∣∣∣ δRW12

∣∣∣∣ . (2.13)

Consequently, the population of the excited state may be suppressed by increasing the amplitudes

W1 or/and W2 of the Rabi frequencies of the laser pulses in Raman resonance.

2.3 Creation of coherent superposition states

In this section we discuss creation of coherent superposition of ground states in the tripod atom,

which is initially optically pumped into one of the ground states, in accordance with (2.11). Namely,

we assume that the atom is initially prepared in state |3〉 for positive (δR > 0) and in state |1〉 for

negative (δR < 0) Raman detuning, respectively. In both cases, positive frequency chirp (β > 0) is

assumed.

2.3.1 Adiabatic following

First, let us describe the transition process in the tripod-atom induced by the three positively fre-

quency chirped (β > 0) pulses for the initial conditions

|ψ (t→ −∞)〉 = |3〉 = W ∗
3 e+i∆t/ |W3| |b3〉 for δR > 0 (2.14a)

|ψ (t→ −∞)〉 = |1〉 = (W2|b1〉+W ∗
1 |b2〉) e+i∆t/W12 for δR < 0. (2.14b)

Note that, due to Raman resonance between states |1〉 and |2〉 (see Fig. ??), the initial condition

|ψ (t→ −∞)〉 = |2〉 would lead to the same result that the conditions given in Eq. (2.14b) do. For
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the preparation given in (2.14a) and (2.14b), the coefficients

r1 = r2 = r3 = 0, r4 = W ∗
3 / |W3| and (2.15a)

r1 = W2/W12, r2 = W ∗
1 /W12, r3 = 0, r4 = 0, (2.15b)

describe the statistical weights of the eigenstates in the dressed states representation of the atomic

wave function (cf. Eq. (1.53)):

|ψ (t)〉 =
4∑

k=1

rk|ak〉 exp

(∫ t

−∞
λk
(
t̂
)

dt̂

)
. (2.16)

In the case of positive Raman detuning (δR > 0), as it was discussed above, the dressed state |a4〉

evolves from state |b3〉 to state |b2〉 with an additional π phase-factor, so the final state vector becomes

|ψ (t→ +∞)〉 = −W
∗
3 e−i∆t

|W3|
|b2〉 = −W

∗
3 (W1|1〉+W2|2〉)
|W3|W12

. (2.17)

As it follows from Eq. (2.17), a coherent superposition of two ground states connected by the

two laser pulses in Raman resonance is created. The contribution of different ground states into

the obtained admixture is governed by the Rabi frequencies (intensities) of the two laser pulses in

Raman resonance. It is worth noting that if W1 = W2, a maximum coherence of 0.5 is achieved in

this scheme.

A slightly more complicated consideration may be provided for the case of negative Raman

detuning (δR < 0). The dressed state |a1〉, corresponding to the eigenvalue λ1 coincides with the

”dark” state and does not change during the interaction. In the same time, as a result of the

interaction, the dressed state |a4〉 evolves from the ”bright” state |b2〉 to the state |b3〉, with an

additional π phase-factor. The resulting state vector will have the following form in the ”dark-

bright” basis (defined in Eq. (2.4)) and the bare basis respectively:

|ψ (t→ +∞)〉 =
W2|b1〉 −W ∗

1 |b3〉
W12

e−i∆t =
|W2|2 |1〉 −W ∗

1W2|2〉
W 2

12

− W ∗
1W3|3〉

W12 |W3|
. (2.18)

As it follows from the obtained equation, the final atomic wave function is a coherent superposition

of the three ground states of the tripod-atom. As in the previous case, the intensities of the pulses
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in Raman resonance govern the contribution of the two ground states in the coherent superposition.

Note that the excited state is absent in the final atomic wave function. During the interaction process

there may be some temporary excitation of the atom, which however may be successfully suppressed

by increasing the intensity of the pulses in Raman resonance, (see Eq. (2.13)).

2.3.2 Results of numerical simulations for negligible relaxation

In the present subsection, we analyze the above considered scheme of creation of coherent superpo-

sition states by numerical simulation of the system of Eqs. (2.3) for the density matrix elements.

At this point, we take the duration of the pulses shorter than longitudinal and transverse relaxation

times of the atomic system to confirm the conclusions based on the dressed state analysis of the

previous subsections.

The results of the numerical simulations are presented in Figs. 2.5 and 2.6 for the cases of

positive and negative Raman detuning, with initial conditions given by Eqs. (2.14a) and (2.14b),

respectively. As it follows from the numerical solutions, the dynamics of the states’ populations and

coherences confirm the results of subsection 2.3.1 based on the adiabatic consideration of the problem.

Accordingly, in the case of positive Raman detuning, population of the initially populated state |3〉

is transferred into the ”bright” superposition |b2〉 of the states |1〉 and |2〉. The time evolution of the

populations in this case is connected with the single dressed state |a4〉. As a result, no oscillations

occur in the dynamics of the populations, (see Fig. 2.5(a)).

(a) Populations (b) Coherences

Figure 2.5: Time evolution of the populations and cohereneces in case of positive Raman detuning
(and positive chirp). Inset: the phase of the coherence ρ12. The parameters used for calculation are
W1 = 250

√
2 [1/τp], W2 = 237.5

√
2 [1/τp], W3 = 262.5

√
2 [1/τp], β = 1250

[
1/τ 2

p

]
, |δR| = 125 [1/τp].
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(a) Populations (b) Coherences

Figure 2.6: Time evolution of the populations and cohereneces in case of negative Raman detuning
(and positive chirp). Inset: the phase of the coherence ρ12. The parameters applied are the same as
in Fig. 2.5.

In the case of positive Raman detuning (with initial preparation of the atom in the state |1〉), all

the three ground states are populated at the end of the interaction: the population of the ”bright”

state |b2〉 is transferred into state |3〉, and the population of the ”dark” superposition |b1〉 is left intact

in the ground state (see Fig. 2.6(a)). The time evolution of the atomic (bare) energy-eigenstate |3〉

corresponds to the dynamics of the single dressed state (|a4〉). Consequently, no oscillations occur

in its time evolution. In contrary, the bare states |1〉 and |2〉 can be described as a superposition of

the dressed states |a1〉 and |a4〉 with related nonequal eigenvalues (quasi-energies) λ1 and λ4. Due to

this superposition of the dressed states, the time evolution of populations of the bare states has an

oscillatory character (see Fig. 2.6(a)). It is important to note that, in both cases, the population of

the excited state is negligible (and temporary), reaching merely 1-2% of the all atomic population.

The following expressions can be obtained from Eqs. (2.17) and (2.18) for the final values of the

density matrix elements corresponding to the cases of the positive (δR > 0) and negative (δR < 0)
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Raman detuning, respectively:

δR > 0 : ρfin
00 = 0, ρfin

11 = |W1|2 /W 2
12, ρfin

22 = |W2|2 /W 2
12, ρfin

33 = 0,

ρfin
12 = (W1W

∗
2 ) /W 2

12, ρfin
13 = 0, ρfin

23 = 0 (2.19a)

δR < 0 : ρfin
00 = 0, ρfin

11 = |W2|4 /W 4
12, ρfin

22 =
(
|W1|2 |W2|2

)
/W 4

12, ρfin
33 = |W1|2 /W 2

12,

ρfin
12 =

(
W1W

∗
2 |W2|2

)
/W 4

12, ρfin
13 =

(
W1W

∗
3 |W2|2

)
/
(
W 2

12 |W3|2
)
,

ρfin
23 =

(
W2W

∗
3 |W1|2

)
/
(
W 2

12 |W3|2
)
. (2.19b)

Dependence of the absolute value of the final coherence on the ratio of the peak Rabi frequencies of

the pulses in Raman resonance is presented in Fig. 2.7 for both cases of positive and negative Raman

detuning. The results show an excellent agreement of the predictions based on the dressed states

analysis (solid lines) with results of the numerical simulation of the Eqs. (2.3) for the density matrix

elements (the points).

(a) (b)

Figure 2.7: Resulting absolute values of the coherence ρ12 versus the ratio of the peak values of Rabi
frequencies W2/W1 for the cases of a.) positive and b.) negative Raman detuning calculated from
the dressed state analysis. The dots are the results of the numerical solution of the master equations,
Eqs. (2.3), in the absence of relaxation processes. The following values of the parameters are used:
W1 = 125

√
2 [1/τp], W3 = 137.5

√
2 [1/τp], β = 1250

[
1/τ 2

p

]
, and W2 is varying.
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2.3.3 Creation and control of the coherent superposition states in Doppler-

broadened media

The potential of schemes based on STIRAP to create coherent superposition states is limited in room

temperature gases due to the Doppler-effect. We show in this subsection that using FC laser pulses

in the proposed scheme allows one to create and control the coherent superposition states equally

efficiently in homogeneously, as well as in Doppler- broadened media.

A Doppler-broadened medium of a gas of tripod-atoms is modeled by averaging the created

coherence over distribution of the resonance frequencies of atoms in the gas at different values of

temperature assuming all three FC laser pulses propagating in a same direction. Considering a gas of

87Rb atoms at temperature T and assuming Maxwell-Boltzmann distribution for the velocities of the

atoms, we have for the (normalized) probability distribution P (∆) for an atom to have single-photon

detuning ∆:

P (∆) =

√
mc2

(2π)3 kT (f0τp)
2 exp− mc2∆2

8π2kT (f0τp)
2 , (2.20)

where k is the Boltzmann constant, m = 86.909u is the mass of 87Rb (u being the atomic unit) and

f0 = 384.230 THz is the frequency distance between the excited and the ground states (F = 1 and

F ′ = 0 hyperfine states in the D2 line of 87Rb), see Fig. 2.8.

Figure 2.8: Probability distribution (normalized to unity) for atomic gas at temperatures equal to
300, 500 and 700 K.
H

The average values of the density matrix elements: populations and coherences 〈ρkl〉, k, l ∈
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{0, 1, 2, 3} are calculated numerically. First the master equation (2.3) is solved numerically for the

values of the detuning ∆ corresponding to nonzero probability values (see Eq. (2.20) and Fig. 2.8)

in order to obtain the density matrix elements ρfin
kl at the end of the interaction (t → ∞). The

resulting populations and induced coherences are presented in Fig. 2.9 as functions of the single-

photon detuning (Doppler-shift) ∆. As it is seen from Fig.7, there is a range of values of the Doppler

shift, where the final coherences (populations) are independent on ∆. This feature is due to the

frequency modulation of the laser pulses: as long as the Doppler shift is smaller than the frequency

range [−5βτp, 5βτp] covered by the chirp during the interaction time (approximately equal to 5βτp),

the velocity of motion of the atoms does not have an impact on the resulting population and coherence

distribution.

(a) (b)

(c) (d)

Figure 2.9: Final populations and coherences at the end of the interaction with the laser pulses as
a function of the normalized single-photon detuning ∆ for the cases of a.) and b.) positive Raman
detuning and preparation in state |3〉 and c.) and d.) negative Raman detuning and preparation
in state |1〉, respectively. The parameters used for calculation are W1 = W2 = 125

√
2 [1/τp], W3 =

137.5
√

2 [1/τp], β = 530
[
1/τ 2

p

]
, δR = 50

√
2 [1/τp], where τp = 1/

√
2× 10−6s.
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The averaging of the obtained solutions for the Doppler-broadened atomic gas is produced by

numerically evaluating the integral

〈ρkl〉 =

∫ ∞
−∞

P (∆) ρfin
kl (∆) d∆ (2.21)

The absolute value of the average induced coherence |〈ρ12〉| established after the interaction with

the laser field is presented in Fig. 2.10 as a function of the speed of chirp β of the laser pulses for

different values of the gas temperature. As it can be seen from this figure, the average value of the

induced coherence does not depend on the Doppler-broadening for sufficiently large frequency span

of the pulses during the interaction time due to a sufficiently high speed of the frequency chirp.

(a) (b)

Figure 2.10: Average value of the final coherence
〈
ρfin

12

〉
between states |1〉 and |2〉 in the cases of a.)

δR > 0 and b.) δR < 0 as a function of the speed of chirp for the temperatures of the gas equal to 300
(red), 500 (blue) and 700 K (green). The parameters used for calculation are the same as in Fig. 2.9

2.3.4 Effect of the relaxation processes

In this subsection, we discuss the influence of the relaxation processes on the coherent control mech-

anism described above. First, we analyze the effect of the spontaneous decay from the excited state.

Here, we assume that the dephasing processes can be disregarded.

In Fig. 2.11, the final populations and the phase of the coherence established between states

|1〉 and |2〉 after the interaction by the FC laser pulses are shown as a function of the longitudinal

relaxation rate. One could anticipate a negligible influence of the spontaneous relaxation processes

on the populations and coherences of the atom when no considerable excitation of the atom takes
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place. However, the results of the numerical simulations show, that even for the negligible excitation

of the atom, the final populations and induced coherences depend on the longitudinal relaxation rate.

The reason is that the optical coherences ρ0k, k ∈ {1, 2, 3} are not negligibly small. It can be seen

from Fig. 2.11 that, the larger the longitudinal relaxation rate (compared to the inverse duration

of the laser pulse) is, the more the population transition process is shifted towards transferring the

population into the dark superposition1 of states |1〉 and |2〉 by the laser pulses in Raman resonance.

Consequently, for larger relaxation rate, the atom ends up in the dark superposition in both cases of

the positive and negative Raman detuning.

(a) (b)

Figure 2.11: Final populations of the atomic states as a function of the product of the pulse length
τp and the longitudinal relaxation rate Γ, in the case of a.) δR > 0 and ρ (t→ −∞) = |3〉〈3| and
b.) δR < 0 and ρ (t→ −∞) = |1〉〈1|, with neglecting the dephasing processes. Insets: the phase of
the created coherence ρ12, where arg (ρ12) = 0 corresponds to the bright, while arg (ρ12) = π to the
dark superposition of states |1〉 and |2〉. The parameters used for calculation are W1 = 250

√
2 [1/τp],

W2 = 237.5
√

2 [1/τp], W3 = 262.5
√

2 [1/τp], β = 1250
[
1/τ 2

p

]
and |δR| = 125 [1/τp].

Since quantum interference processes are the basis for the above described coherence creation

schemes, the phase relations between the probability amplitudes of the states (the values and the

phases of the corresponding coherences) must play an important role in the considered processes.

That is why a strong effect of the transverse relaxation (dephasing) processes may be anticipated

on the creation and control of coherent superposition states as well as on the population transfer

between the atomic states. The final populations of the atomic states as a function of the dephasing

rate γ are presented in Fig. 2.12 as a result of numerical simulation of the master equation, Eq. (2.3).

It can be seen from the behavior of the populations that the effect of the dephasing begins to be

1It follows from Eq. (2.5) that arg ρ12 = π corresponds to the dark, while arg ρ12 = 0 to the bright superpositions
|b1〉 and |b2〉, respectively.
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(a) (b)

Figure 2.12: Final populations of the atomic states as a function of the product of the pulse length
τp and the transverse relaxation rate γ, in the case of a.) δR > 0 and ρ (t→ −∞) = |3〉〈3| and b.)
δR < 0 and ρ (t→ −∞) = |1〉〈1|, assuming no longitudinal relaxation. Insets: the absolute values of
the coherences between the ground states. The parameters used for calculation are the same as in
case of Fig. 2.11

imperative at τpγ = 10−1/2. This is true for both cases of positive and negative Raman detuning. If

the interacting pulses are longer (compared to the inverse dephasing rate γ−1), the adiabatic transfer

process is destroyed by the dephasing. In this case, the interaction results in equally populated

ground states without any coherence among them (see Insets in Fig. 2.12).

2.3.5 Robustness of the process

Let us now discuss robustness of the proposed scheme of creation of superposition states against

variation of the main parameters of the laser radiation. As it follows from Fig. 2.7 and Eqs. (2.19a)

and (2.19b), the absolute value of the created coherence |ρ12| depends on the ratio of the peak

Rabi frequencies of the laser pulses in Raman resonance and does not depend on the phase re-

lations between the laser pulses. In both considered cases (δR > 0 and ρ (t→ −∞) = |3〉〈3|,

δR < 0 and ρ (t→ −∞) = |1〉〈1|), one can control the induced coherence for example, by vary-

ing the intensity of one of the laser pulses in Raman resonance leaving fixed the intensity of the

second pulse. Note, that the induced coherence is robust against changes in the intensity of the laser

pulse out of Raman resonance as long as these changes do not violate the adiabaticity conditions,

(see Eq. (1.76)).

Robustness of the scheme against variations of the parameters of the pulses in Raman resonance
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may be provided utilizing laser pulses from the same source. In this case, with the variation δW of

the peak Rabi frequencies of the pulses, the variation of the ratio of the two peak Rabi frequencies

may be estimated as

δ (W1/W2) ≈ W1/W2 [1 + δW (W2 −W1) / (W1W2)] . (2.22)

As it follows from this relation, the dependence of the variation δ (W1/W2) on the parameter δW is

weak and hence, the robustness of the process is especially high in the case of close values of the peak

Rabi frequencies of the pulses in Raman resonance: W1 ≈ W2. In this case, the maximum value of

the induced coherence |ρ12| equal to 0.5 is achieved for the negative Raman detuning (see Fig. 2.7).

Note that the considered schemes are also extremely robust against variations of the speed of the

chirp, as is usually the case for adiabatic processes.

2.4 Phase information mapping in the populations of the

atomic states

In this section we suppose that the tripod-atom is initially prepared in a coherent superposition of

the ground states coupled by the pulses in Raman resonance. Note that this preparation can be

realized for example by applying the above described scheme with negative Raman detuning (δR).

Our aim is to show that this scheme may be applied to map optical information into the ground

states of the atom.

2.4.1 Dynamics of the populations of the atomic states

We analyze the interaction scheme in case of negative Raman detuning (δR < 0) and we assume that

the atom is prepared in a superposition of states |1〉 and |2〉, namely

|ψ (t→ −∞)〉 =
α1|1〉+ α2|2〉√

2
= e−i∆t

[
W2α1 +W1α2

W12

|b1〉+
−W ∗

1α1 +W ∗
2α2

W12

|b2〉
]
. (2.23)

We have seen in subsection 2.2.1 that this initial condition results in such a dynamics of the system

which allows only negligible excitation, provided the condition given in Eq. (2.13) is fulfilled. This
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is because, on one hand, state |b1〉 remains unaffected by the interaction and, on the other hand,

state |b2〉 is adiabatically transferred into state |b3〉 with an additional π phase factor, by following

the time evolution of adiabatic eigenstate |a4〉 (see Fig 2.3(b) and the successive argument). Thus,

the state of the system established by the interaction is given by

|ψ (t→ −∞)〉 = e−i∆t
[
W2α1 +W1α2

W12

|b1〉 −
−W ∗

1α1 +W ∗
2α2

W12

|b3〉
]

=
W ∗

2 (W2α1 +W ∗
1α2)

W 2
12

|1〉+
W ∗

1 (W2α1 +W ∗
1α2)

W 2
12

|2〉+
W3 (W1α1 −W ∗

2α2)

W12 |W3|
|3〉. (2.24)

Note that the δR < 0 case of the coherence creation problem discussed in section 2.3 is a special case

the present one with α1 = 1 and α2 = 0. Accordingly, Eq. (2.18) can be obtained from Eq. (2.24)

using this substitution.

From Eq. (2.24), the following expressions follow for the final populations of atomic states:

ρfin00 = 0, ρfin11 =
|W2|2

W 2
12

Q−, ρfin22 =
|W1|2

W 2
12

Q−, ρfin33 = Q+, where

Q± =
[
|α2|2 |W1|2 + |α1|2 |W2|2 ± 2 |α1| |α2| |W1| |W2| cos (ϕ− φ)

]
/W 2

12. (2.25)

Here we introduced the relative phase ϕ = ϕ
(0)
2 − ϕ

(0)
1 of the peak Rabi frequencies W1 and W2, and

φ is the difference between the complex phases of the probability amplitudes α1 and α2.

In Fig. 2.13 the time evolution of the populations ρkk of the atomic states are presented for

three different values of the relative phase ϕ, calculated numerically from the master equation (2.3),

assuming the relaxation processes in the system can be disregarded. This is a good approach if

the interaction time is shorter than any relaxation time including the spontaneous decay from the

excited state and the coherence relaxation time. The numerical results confirm well the predictions

of the adiabatic theorem: the dynamics of the populations show a significantly different behavior

depending on the relative phase ϕ, when the other interaction parameters are the same.

We further make use of this sensitivity for designing an optical information mapping procedure.

Another important feature of the interaction is that there is a negligible (and only temporary) excita-

tion of the atom during the interaction, which is important to avoid decoherence due to spontaneous

decay. We show later (in subsection 2.4.3) that the mapping process is indeed possible for moderate

relaxation rates.
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(a) (b)

(c)

Figure 2.13: Dynamics of the atomic populations for three different values of the relative phase of
the Rabi frequencies of the pulses in Raman resonance: a.) ϕ = 0, b.) ϕ = π/6, c.) ϕ = π/2 in
the absence of relaxational processes. The following parameters were used for calculation: |W1| =
|W2| = 50 [1/τp], W3 = 100 [1/τp], β = 150

[
1/τ 2

p

]
, ∆ = 0, δR = −25, α1 = α2 = 1/

√
2.

2.4.2 Writing and storage of the phase information in the populations

of the atomic states

The dependence of the final populations of the ground states on the phase difference ϕ of the Rabi

frequencies Ω1 and Ω2 is presented in Fig 2.14. Here, the master equation (2.3) was numerically

solved without any relaxation processes and the populations ρfin
kk = ρkk (t→∞) established by the

interaction were calculated for the relative phase ϕ varying between 0 and 2π in 36 steps.

We chose ρ (t→ −∞) = 1/2 (|1〉+ |2〉) (〈1|+ 〈2|) (α1 = α2 = 1/
√

2, φ = 0) as initial state of

the atom and |W1| = |W2|. According to the prediction of the adiabatic approximation (see (2.25)),
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these conditions maximize the contrast of the phase mapping, which may be defined as

C =
maxϕ ρ

fin
33 −minϕ ρ

fin
33

maxϕ ρfin
33 + minϕ ρfin

33

, (2.26)

since

Q± (ϕ, φ) ≡ Q±
∣∣
α1=α2=1/

√
2,|W1|=|W2|

=
1

2
[1± cos (ϕ− φ)] (2.27)

changes between 0 and 1 as a function of ϕ, which means that ρfin
33 (ϕ) reaches its possible extreme

values. Fig. 2.13 makes obvious the excellent agreement of the numerical calculations with the results

(a) (b)

Figure 2.14: Dependence of the final populations of the states (points) on the relative phase of the
laser pulses in Raman resonance with fitting curve (solid line) q± (ϕ) (see (2.28)). The parameters
applied for calculations are the same as in case of Fig. 2.13, the fitting parameters are a.) A = 0.5,
b = 0 and b.) A = 1, b = 0.

of the investigations based on the adiabatic theorem. Namely, the fitting function

q± (ϕ) = AQ± + b (2.28)

expressing the dependence of the final populations on the relative phase, deducted from the dressed

states analysis fits very well on the points resulting from numerical simulation

Because the information is written in the populations of the ground states without considerable

excitation of the atom, its storage time is scaled by the lifetime of the ground states. It substantially

exceeds the transverse relaxation times limiting the information storage time of EIT-based schemes.
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The proposed method is applicable best to store the transverse distribution of the phase (trans-

verse phase images). The information has to be coded in the transverse phase distribution of one

of the laser beams among the two in Raman resonance with the atom. The second laser beam, in

Raman resonance with the first one, has to have a homogeneous phase front.

Figure 2.15: Schematic of the phase information writing in and reading out from the populations of
the atomic states. The phase information mapped in the transverse distribution of the population of
the metastable state |3〉 is transferred into the transverse distribution of the intensity of the reading
pulse.

An additional laser pulse with homogeneous transverse distribution of the intensity will be used

as a reading laser. This pulse will measure the population of a metastable state after the information

writing process by transferring it to the excited state. The transverse phase information stored in

the transverse distribution of the atomic state population will be transformed into the transverse

distribution of the intensity of the reading pulse: The more the population of a given state of an

atom at a given transverse position, the more will be the absorption of the reading beam at this

transverse point, see Fig. 2.15.

To make the reading process more effective one may use a frequency chirped reading laser pulse

transferring nearly all the population of the metastable state into the excited state. To store the

information for further reading, one can apply another (restoring) laser pulse similar to the reading

one that transfers the population of the excited state back into the metastable state previously used

for the storage.
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2.4.3 Impact of the relaxation processes on the information mapping

process

In order to analyze the impact of the relaxation processes on the optical phase information writ-

ing, we solved the master equation (2.3) numerically with the same initial condition (ρ (t→ −∞) =

1/2 (|1〉+ |2〉) (〈1|+ 〈2|)) as was used in the previous subsection. The effect of the longitudinal re-

laxation and dephasing processes were investigated separately. In both cases, the 36-step calculation

determining the phase-dependence of the final populations was performed, for each value of the lon-

gitudinal relaxation and dephasing rate, between 10−3 [1/τp] and 103 [1/τp] in 20 (logarithmic) steps,

respectively.

(a) (b)

Figure 2.16: a.) Dependence of the final population of state |3〉 on the relative phase ϕ of Ω1 and
Ω2 for different values of the logarithm of the product of the longitudinal relaxation rate and the
interaction length (η = log10 (Γτp)). The dots are results of numerical integration of Eq. (2.3), the
solid lines are fitting curves with the function q+ (ϕ) given in (2.28). b.) Fitting parameters A and
b for different values of η.

As Figs. 2.16 and 2.17 show, the same function q+ (ϕ) (cf. Eq. (2.28)) characterizes the de-

pendence of the final population ρfin
33 on the relative phase ϕ as the one predicted by the adiabatic

approximation. The effect of the relaxation processes (both longitudinal relaxation and dephasing)

manifest themselves in the contrast (2.26) of the writing process which is a simple function of the

fitting parameters A and b (see Figs. 2.16(b) and 2.17(b)):

C =
A

A+ 2b
. (2.29)

Comparing Figs. 2.16(b) and 2.17(b) with Figs. 2.11 and 2.12, it turns out that the relaxation
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(a) (b)

Figure 2.17: a.) Dependence of the final population of state |3〉 on the relative phase ϕ of the pulses
in Raman resonance for different values of the logarithm of the dephasing rate and the interaction
length (ν = log10 (γτp)). The dots are results of numerical integration of Eq. (2.3), the solid lines are
fitting curves with the function q+ (ϕ) given in (2.28). b.) Fitting parameters A and b for different
values of ν.

processes affect the coherence creation and the phase mapping mechanisms basically the same way.

More specifically, the contrast of the mapping starts to significantly decrease for Γτp ≈ 101/2 in case

of longitudinal relaxation and for γτp ≈ 10−1/2 for dephasing. Consequently, the mapping has to be

established faster than the typical rate of the latter processes, which is not very surprising since the

basis of the mechanism is quantum interference.

On the other hand, we can see that the mapping is not too sensitive on the spontaneous decay

from the excited state: even for laser pulses ten times longer than the lifetime of the excited state a

noticable contrast can be achieved. Note that since the information is mapped in the ground states,

the longitudinal relaxation from the excited state only affects the writing process, the storage time

is only limited by the lifetime of the ground states.

2.5 Summary

In this chapter, we have analyzed the system of a tripod atom interacting with three FC laser

pulses. Each atomic transition is driven by a separate pulse, two of them in Raman resonance, the

third one detuned from it. By studying the adiabatic states, we have shown that both for positive

and negative values of the Raman detuning, certain population redistribution processes are possible

among the ground states without significant excitation of the atom. Namely, there are two eigenstates
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of the interacting system which have (for suitable parameters) only a negligible projection onto the

excited state. By initially preparing the atom in different states in the subspace spanned by the two

mentioned states, several control tasks can be achieved. In this chapter two substantially different

arrangements are presented.

First, we have presented an interaction scheme suitable for creating a superposition among two

or three ground states. After being prepared in one of the ground states, the atomic population has

been shown to be transferred to a coherent superposition. We have shown by studying the adiabatic

eigenstates and by performing numerical calculations as well that the composition of the created

superposition is controllable by the peak intensities of the laser pulses in Raman resonance. We have

also analyzed the applicability of the scheme in a Doppler-broadened medium of a gas composed of

tripod-atoms by averaging the induced coherence over the velocity distribution of the atoms in the

gas at different temperatures. The results indicate that the scheme is effective even for relatively

large widths of the Doppler-broadened transition lines if the frequency span of the laser pulses due

to the chirp exceeds the width of the Doppler-broadening.

The influence of relaxation processes on the population transfer mechanism was also analyzed by

numerical simulation of the master equation. Based on our results we can state that the considered

scheme allows minimizing the effect of the spontaneous decay by suppression of the population of the

excited state. However, even under the condition of negligible excitation of the atom, for longer laser

pulses, the longitudinal relaxation may influence the induced coherences and the resulting population

distribution among the ground states. For laser pulses longer that the decay time of the excited state,

optical pumping of the atom by a pair of the pulses in Raman resonance results in the accumulation

of the atomic population in a dark superposition of the ground states linked by the laser pulses in

Raman resonance. Note that the influence of the spontaneous decay may be minimized by increasing

the speed of the population transfer.

The transverse relaxation (dephasing) also forces restriction on the method: The numerical sim-

ulation of the master equation has shown that transverse relaxation processes destroy the adiabatic

transfers already when the duration of the laser pulses is close to the dephasing time of the medium.

At larger transverse relaxation rates or longer laser pulses, all the states are equally populated as

a result of the interaction and no coherent superposition states are created. While the detrimental

effect of transverse relaxation may be avoided by utilizing sufficiently short laser pulses, this effect
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may also be diminished by increasing the chirp speed of the FC pulses.

In the other interaction scheme investigated in this chapter it has been assumed that the atom was

initially prepared in an equal superposition of the two ground states. This initial condition may be

realized, for example, by using the first interaction scheme presented here. We have shown that the

population distribution established by the interaction depends on the difference of the phases of the

pulses in Raman resonance. This property make this scheme suitable for phase information writing

(mapping) in populations of the ground states. Measuring the population of a meta-stable state by

frequency chirped laser would restore the phase information. The transverse phase image will be

then transformed into the transverse intensity modulation of the reading laser beam. Note that the

information reading process is analogous to measuring the created coherent superposition [120, 121].

The main advantage of the method is its long information storage time. This time scales by

the lifetime of the atomic metastable states instead of the transverse relaxation time of the atomic

coherences in the case of the EIT- based methods. There is a negligible temporary excitation of the

atom during the information writing providing immunity of the method to the decoherence processes

through decay of the excited state.

Note that both schemes considered above provide the possibility of preparing atoms in coherent

superpositions of the ground states, which can be easily modified by external parameters. Thus,

they may find practical applications in nonlinear optics, since the preparation of the atoms in co-

herent superposition states may result in extreme changes in the optical (refractive and absorption)

properties of a medium composed of them via quantum interference.
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Chapter 3

Coherent control using a combination of

a FC and constant-frequency laser pulses

In this chapter, we analyze the population redistribution induced in a Λ-atom by two laser pulses.

One of them has constant carrier frequency, while the other pulse is frequency chirped in such a

way that it sweeps through two-photon resonance. We analyze this interaction in two limiting cases,

resulting in substantially different passage mechanisms.

In the first case, the pulse with constant carrier frequency is exactly resonant with one of the

atomic transitions, so that the FC pulse sweeps through both the one-photon and the two-photon

resonances. This scheme resembles the well-known EIT-configuration (see e.g. [38] and the included

references) in the sense that one of the atomic ground states is coupled to the excited state by a strong

resonant field, which creates two dressed states from them [122]. This pair of dressed state has been

shown to be equivalent to a pair of closely spaced lifetime-broadened resonances [123] (Autler-Townes

doublet), which are superpositions of the coupled atomic states. However, the scheme analyzed here

differs from the one of EIT in the point that the other dipole-allowed transition in the lambda-atom

is driven by a strong frequency-chirped laser pulse instead of a weak probe wave with constant carrier

frequency.

On the other hand, it has been demonstrated in [68], that in an atom having two excited states

close to each other, selective population inversion can be induced by a FC pulse. Namely, the

population of the atom, initially prepared in the ground state, is transferred into the excited state

which the driving pulse first become resonant with.
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Based on these, we anticipate that the interaction of a lambda-atom with the constant-frequency

and the FC pulse may result in creation of a coherent superposition between the excited state and

one of the ground states. Note that robust preparation of coherence between the ground and excited

state have a great importance in high-order harmonic generation and multi-photon ionization in

gases [24, 26, 28, 29, 86–89, 124].

In the second case we investigate, the carrier frequency of the non-modulated pulse is far-detuned

from resonance. Namely, its detuning from the atomic resonance is much larger than the Rabi

frequency of the pulse and also the frequency range covered by the other, FC pulse.

The effect of a far-detuned pulse pair (a strong coupling and a weak probe) having constant carrier

frequencies close to two-photon resonance in Λ-atoms has been already investigated [125, 126]. In

these works, it was proven that the probability of the excitation of the atom is negligible due to the

large one-photon detuning and thus the system could be approximated by a two-state atom through

eliminating the excited state. In [126], the lambda-model was shown to be well applicable for 85Rb

and 87Rb atoms. Although, since the one-photon detuning was larger than the separation of the

excited states, effective far-detuned dipole moments were needed to be introduced.

Here, we examine the possibility of using the approximation described above if we exchange the

probe field having constant frequency for a stronger, frequency-modulated one. We also consider to

apply this far-detuned coupling scheme for population transfer between two specific magnetic sub-

levels of a ground state1 of the 87Rb atom, using circularly polarized pulses. Our aim is to create

coherent superposition among the ground states without significantly populating any of the excited

states.

3.1 Interaction of a Λ-atom with a FC and a constant-frequency

pulse

In this chapter we analyze the interaction of a single atom at a fixed location with a pair of laser

pulses, one with chirped frequency and the other one having constant carrier frequency. The time

1F = 1 hyperfine level of state 52S1/2, see Fig. 3.5.
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dependence of the electric field strength of the laser field is given as

~E (t) = {~ε1E1 (t) exp [−i (ω1t+ ϕ (t))] + ~ε2E2 (t) exp [−iω2t]}+ c.c., (3.1)

where ~εk is the polarization, ωk is the central frequency, Ek (t) is the slowly varying envelope function

of the kth laser pulse (having a constant complex phase) and ϕ (t) is the time dependent phase due

to the frequency modulation.

These laser pulses act on an atom having Λ-type linkages: each of them couples a (meta-stable)

ground state |gk〉 to the excited state(s) of the atom. We consider two limiting cases with respect to

the frequencies of the interacting pulses compared to the atomic transition frequencies. In the first

one (Fig 3.1(a)), the laser pulse having constant frequency ω2 is on resonance with the transition

from one of the ground states to one of the excited state (|e〉). Meanwhile, the frequency of the

other pulse is swept through two-photon resonance. The frequency-range covered by the frequency-

modulation is small enough that the FC pulse stays far from being resonant with any other atomic

transitions. Therefore, it is enough to take into account only one excited state (for more detailed

discussion, see subsec. 1.1.1). In the second case, however, the constant frequency pulse is tuned

(a) (b)

Figure 3.1: Interaction schemes including a pair of laser pulses having chirped and a constant carrier
frequencies in case of a.) resonant b.) far-detuned coupling

significantly below the atomic transitions (”far-detuned” case, Fig 3.1(b)) and the frequency of the

other pulse is chirped in such a way that it becomes two-photon resonant, but remains far from

one-photon resonance during the interaction time. Since there is not one excited state selected by

resonant driving, several excited states have to be taken into account in the coupling scheme.
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In both cases, we assume that the atom is initially prepared in the ground state coupled by the

frequency-modulated pulse (|g1〉 with the notations of Fig. 3.1). It is also assumed in both situations

that the atom-laser interaction takes place in a timescale which is significantly shorter than the

lifetimes of the states. Thus, we disregard the decay processes and we describe the time evolution of

the system by the Schrödinger-equation.

3.2 Coherence creation between the excited and one of the

ground states (case of resonant driving)

In this section, we investigate the interaction of the atom with the laser pulses for the case when the

pulse with constant carrier frequency ω2 is in resonance with the transition |g2〉 → |e〉.

3.2.1 Mathematical formalism

For describing the atomic states, we use the rotational basis introduced in Eq. (1.23), which incor-

porates the time-dependent phases

ϕ1 (~x0, t) = βt2/2 ϕ2 (~x0, t) = 0, (3.2)

where ~x0 is the location of the atom, assumed to be an arbitrary, fixed value. We assume here a

linear chirp with a rate of β. Using this rotational basis, the interaction Hamiltonian is given by

Ĥres = −~
{
−βt|g1〉〈g1|+

1

2
[|e〉 (Ω1〈g1|+ Ω2〈g2|) + H.c.]

}
. (3.3)

Here Ωk = ϑk exp
(
−iϕ

(0)
k

)
is the Rabi frequency belonging to the kth pulse (cf. Eq. (1.28)), with

slowly changing absolute value and constant complex phase.

Coordinate transformation: symmetric-antisymmetric basis

It is convenient for our considerations to introduce the following set of basis states which contains

a symmetric and an antisymmetric superposition of the excited state |e〉 and the ground state |g2〉,
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which is coupled to the excited state by the constant-frequency laser field:

{|b1〉, |bs〉, |ba〉} =

{
e−iϕ

(0)
1 |g1〉,

|e〉+ e−iϕ
(0)
2 |g2〉√

2
,
|e〉 − e−iϕ

(0)
2 |g2〉√

2

}
, (3.4)

where −ϕ0
k is the complex phase of the Rabi frequency Ωk. The Hamiltonian Ĥres in this coordinate

system reads as

Ĥsa
res = −~

{
−βt|b1〉〈b1|+

|Ω2|
2

(|bs〉〈bs| − |ba〉〈ba|) +
1

2

[
|Ω1|√

2
(|bs〉+ |ba〉) 〈b1|

]
+ H.c.

}
. (3.5)

3.2.2 The results of the numerical calculations

We proceed with numerical solution of the Schrödinger equation

i~∂t|ψ〉 = Ĥres|ψ〉 (3.6)

for the state vector |ψ〉 = c0|e〉 + c1|g1〉 + c2|g2〉 with the Hamiltonian Ĥres given in Eq. (3.3). We

assume the same Gaussian envelopes of the laser pulses:

Ω1,2 (t) = Ω
(0)
1,2f (t) with f (t) = exp

[
−t2/2

]
, (3.7)

where the time is measured in the units of τp = τL/
(

2
√

ln 2
)

with τL being the full width at half

maximum and Ω
(0)
12 being the peak amplitudes of the pulses. The population of the bare states of

the atom and the absolute value of the created coherence in the field of the pair of the laser pulses is

presented in Fig. 3.2. As it is seen from Fig. 3.2(b), a maximum value of coherence of 0.5 is created

as a result of the interaction.

In Fig. 3.3, the final absolute value of the coherence between the initially empty ground state

|g2〉 and excited state |e〉 is shown by a color map versus the chirp rate and the proportion of the

peak Rabi frequencies. As it can be seen from this Figure, the value of the created coherence is

extremely robust against variation of these parameters. Note that both of these parameters are

given in logarithmic scale.

For efficient coherent enhancement of processes such as multi-photon ionization or high-order
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(a) (b)

Figure 3.2: a.) Dynamics of the states’ populations in the laser field and b.) absolute value of the
coherence created between the states |e〉 and |g2〉. Parameters applied are: the peak Rabi frequencies

Ω
(0)
1 = Ω

(0)
2 = 30 [1/τp], linear chirp rate β = 20

[
1/τ 2

p

]
, and duration of the pulses τp = 1.5 ns.

Figure 3.3: Color plot of the absolute value of the created coherence versus the speed of the chirp β
and the peak Rabi frequency Ω

(0)
2 of the laser pulse with constant carrier frequency (in logarithmic

scale): Ω
(0)
2 = ηΩ

(0)
1 with a fixed value of the peak Rabi frequency of the chirped laser pulse Ω

(0)
1 =

45 [1/τp]. Other parameters applied are: τp = 3 ns.

harmonic generation, one has to create coherent superpositional states with the same (arbitrary)

phase of the coherence in all atoms of the ensemble. Provided that the interaction takes place in the

adiabatic regime (cf. Sec. 1.3), the scheme under consideration allows robust creation of coherence

with a phase that does not depend on the shape, duration and intensity of the laser pulses or the

speed of the chirp. At the same time, the phase may be controlled by the sign of the frequency
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chirp: for a positive frequency chirp the created coherence has a phase equals 0 radians; while it

equals π radians for the opposite direction of the chirp (negative chirp), Fig. 3.4. In the analysis

(a) (b)

Figure 3.4: The phase of the coherence between the initially empty ground and excited states in
π radians a.) in the case of positive chirp β = 20

[
1/τ 2

p

]
, and b.) in the case of negative chirp

β = 20
[
1/τ 2

p

]
. Other parameters applied are the same as in Fig. 3.2.

above, the constant phases ϕ0
1 and ϕ0

2 of the Rabi frequencies Ω1 and Ω2, respectively, are assumed

to be the same. This allowed us to calculate with real-valued peak Rabi frequencies Ω
(0)
1 and Ω

(0)
2 .

In the case when the relative phase ∆ΦL = ϕ0
1 − ϕ0

2 6= 0, the phase of the created coherence will be

∆ΦL for positive frequency chirp, and π −∆ΦL for the negative chirp. It means that the phase of

the created coherence can be controlled by the sign of the frequency chirp and, additionally, by the

initial relative phase of the two laser pulses.

Such a behavior of the phase may be explained as follows. The population of the initially popu-

lated ground state is transferred to one of the superpositional states, either the symmetric state with

the coherence having phase of 0 radians, or the anti-symmetric one having coherence with phase

equals π radians.

3.3 Creation of coherence between the Zeeman sublevels in

87Rb (the case of far-detuned driving)

In this section, we proceed with the second limiting case of the problem at hand. Here, we wish to

describe the interaction of the atom with two pulses which are significantly detuned from the possible

transitions from the ground states. As it was mentioned above, we need to take into account several
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atomic excited states. That is, it is the level scheme of the atom for which we wish to apply the

interaction scheme that determines which atomic levels are needed to be included into our model.

52S1/2

52P3/2

780.241 209 686(13) nm
384.230 484 468 5(62) THz
12 816.549 389 93(21) cm-1

1.589 049 462(38) eV

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F = 2

F = 1

gF o=o1/2

(0.70 MHz/G)

gF o=o-1/2

(-o0.70 MHz/G)

193.7407(46) MHz

72.9112(32) MHz

229.8518(56) MHz

302.0738(88) MHz

266.6500(90) MHz

156.9470(70) MHz

72.2180(40) MHz

F = 3

F = 2

F = 1

F = 0

gF o=o2/3

(0.93 MHz/G)

gF o=o2/3

(0.93 MHz/G)

gF o=o2/3

(0.93 MHz/G)

Figure 3.5: The scheme of the hyperfine level structure of the 52S1/2− 52P3/2 transition (D2 line) of
87Rb

Here, we choose the magnetic sublevels |m = −1〉 and |m = +1〉 of the F = 1 hyperfine level of

the 52S1/2 state of 87Rb to be the ground states |g1〉 and |g2〉 (see Fig. 3.5 for the scheme of the

hyperfine level structure of the 52S1/2 − 52P3/2 transition (D2 line) of 87Rb [127]). Our aim is to

investigate the two-photon transitions between these two states through the excited state 52P3/2 by

using a pair of laser beams: One with σ− circular polarization and constant carrier frequency and

another one with σ+ polarization with frequency swept through the Raman resonance with two-

photon transition between the states |g1〉 and |g2〉. Here the atomic quantization axis is aligned with
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the light propagation direction. However, both of the central frequencies ω1 and ω2 are tuned below

resonance so that their detuning from the transition frequency between states |F = 1〉 and |F ′ = 0〉

is larger than the energy difference between the hyperfine states of the excited state. Fig. 3.6 shows

the possible dipole-allowed transitions induced by this pair of laser pulses, taking into account the

selection rules [111]

F ′ = F or F ′ = F ± 1

m′F = mf or m′F = mF ± 1

F ′ 6= F if m′F = mF = 0

(3.8)

for the hyperfine transition |F mF 〉 → |F ′m′F 〉 and also the law of angular momentum conservation

which implies that the m′F = mF + 1 and m′F = mF − 1 transitions can be coupled by positively

(σ+) and negatively (σ−) circularly polarized light, respectively. We assume for simplicity that there

Figure 3.6: Diagram of the manifold of the F = 1→ F ′ transition in 87Rb (D2 line) with all possible
transitions marked by red and blue arrows. One of the laser pulses (red, thick) has a constant carrier

is at most a very weak magnetic field present, therefore the Zeeman-sublevels have the same energy.

However, the considerations above also holds in the presence of nonzero Zeeman-shifts with a small

modification.
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3.3.1 Mathematical formalism

The interaction of the atom with the laser pulses is described in RWA approximation (cf. sub-

sec. 1.1.3) by the Hamiltonian

ĤRb = −1

2

{
E1d11ei[∆0t−ϕ(t)]|e1〉〈g1|+ E1d21ei[(∆0+δ1)t−ϕ(t)]|e2〉〈g1|+ E2d31ei(∆0+δ1+δ2)t|e3〉〈g1|

+ E1d41ei[(∆0+δ1+δ2)t−ϕ(t)]|e4〉〈g1|+ E2d12ei∆0t|e1〉〈g2|+ E2d22ei(∆0+δ1)t|e2〉〈g2|+

E2d42ei(∆0+δ1+δ2)t|e4〉〈g2|+ E1d52ei[(∆0+δ1+δ2)t−ϕ(t)]|e5〉〈g2|+ H.c.
}
. (3.9)

Here dkl = 〈ek | d̂ | gl〉 is the matrix element of the electric dipole moment operator d̂ between the

excited state |ek〉 and the ground state |gl〉. ∆0 = ωF=1,F ′=0−ω2 is the frequency difference between

the frequency of the F = 1→ F ′ = 0 transition and the constant carrier frequency of the laser pulse

with σ− polarization, δ1 and δ2 are the frequency separations between the hyperfine levels |F ′ = 0〉,

|F ′ = 1〉 and |F ′ = 2〉, respectively. φ (t) is the time-dependent phase of the laser pulse with σ+

polarization due to frequency chirp.

Rotating basis

It is more convenient in further analysis to describe the interaction in a basis which incorporates the

time-dependent complex phases into the rotation of the states:

{
|g̃1〉 ≡ eiϕ(t)|g1〉, |g̃2〉 ≡ |g2〉, |ẽ1〉 ≡ ei∆0t|e1〉, |ẽ2〉 ≡ ei(∆0+δ1)t|e2〉, (3.10)

|ẽ3〉 ≡ e[i(∆0+δ1+δ2)t+ϕ(t)]|e3〉, |ẽ4〉 ≡ ei(∆0+δ1+δ2)t|e4〉, |ẽ5〉 ≡ e[i(∆0+δ1+δ2)t−ϕ(t)]|e5〉
}
,

which leads to the Hamiltonian

ĤRb = ~

{
ϕ̇ (t) |g1〉〈g1|+

5∑
l=1

[
∆l (t) |ek〉〈ek|+

1

2

(
Ωl

1|el〉〈g1|+ Ωl
2|el〉〈g2|+ H.c.

)]}
, (3.11)
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where the couplings (Ωl
1 and Ωl

2) and the detunings ∆l (t) may be represented as components of the

following ”Rabi frequency vectors” and ”detuning vector”:

~Ω1 =
1

~
[d11E1 d21E1 d31E2 d41E1 0 ] (3.12a)

~Ω2 =
1

~
[d12E2 d22E2 0 d42E2 d52E1] (3.12b)

~∆ (t) = [∆0 ∆0 + δ1 ∆0 + δ1 + δ2 + ϕ̇ (t) ∆0 + δ1 + δ2 ∆0 + δ1 + δ2 − ϕ̇ (t)] , (3.12c)

where dot denotes the partial differentiation with respect to time t.

3.3.2 Analytical consideration

The dynamics of the atomic state

|ψ〉Rb =
2∑

k=1

ak (t) |gk〉+
5∑
l=1

bl (t) |e5〉 (3.13)

is given by the Schrödinger equation i~∂t|ψ〉Rb = ĤRb|ψ〉Rb which may be rewritten in the form

ȧ1 (t) + i ϕ̇ (t) a1 (t) =
i

2

5∑
l=1

Ωl∗
1 bl (t) (3.14a)

ȧ2 (t) =
i

2

5∑
l=1

Ωl∗
2 bl (t) (3.14b)

ḃl (t) + i ∆l (t) bl (t) =
i

2

(
Ωl

1a1 (t) + Ωl
2a2 (t)

)
, ∀l ∈ {1, . . . , 5} , (3.14c)

where the ”vectors” defined in Eq. (3.12c) for the Rabi frequencies and the detunings were used. Here

we take into the account the assumption that the laser pulses are ”far detuned” from one-photon

resonance, that is

Ω1,2 � ∆0, δ1,2 � ∆0, ϕ̇ (t)� ∆0 ∀t ∈ [−τp, τp] , (3.15)
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with τp being the duration of the laser pulses (equal for both of them). Therefore, the time derivatives

ḃl (t) may be neglected in Eq. (3.14c), to obtain the expressions

bl ≈
Ωl

1a1 (t) + Ωl
2a2 (t)

∆0

, ∀l ∈ {1, . . . , 5} (3.16)

for the amplitudes of the excited states, where ∆l (t) ≈ ∆0 was also assumed. Substituting the

relations given in Eq. (3.15) into Eqs. (3.14a) and (3.14b), we can formulate the relation for the

phase-shifted probability amplitudes ã1,2 (t) = a1,2 (t) exp
[
−i|~Ω1|2/ (2∆0)

]
of the ground states as

˙̃a1 (t) + i ϕ̇ (t) =
i

2
Ω∗eff ã2 (t) (3.17a)

˙̃a2 (t) + i ∆eff =
i

2
Ωeff ã1 (t) , (3.17b)

with the effective Rabi frequency and detuning

Ωeff = ~Ω1 · ~Ω∗2/∆0 and ∆eff =
(
|~Ω1|2 − |~Ω2|2

)
/ (2∆0) . (3.18)

As it follows from Eq. (3.17), in the proposed scheme the interaction of the pair of laser pulses with a

multilevel atomic system may be represented as an interaction of a laser pulse with the effective Rabi

frequency with a two-level system consisting of the two meta-stable states |g1〉 and |g2〉. The influence

of the remaining levels is reduced to additional ac-Stark shifts of the transitions described by the

effective detuning given in Eq. (3.18). These Stark shifts compensate each other when ∆eff = 0, so

that the behavior of the multilevel system under consideration becomes completely equivalent to that

of a corresponding two-level system. This similarity to a two-level atom is useful for interpretation

of the results of the numerical analysis given below.

3.3.3 Results of the numerical simulations

We first consider the laser pulses with the same temporal Gaussian shape, f1 (t) = exp [−t2/2], with

the time measured in the units of the pulse length τp = τL/
(

2
√

ln 2
)

, where τL is the full width

at half maximum. In this case we assume a linear modulation in the carrier frequency of the pulse

having positive circular polarization, so that ϕ̇1 (t) = βt, with β being the speed of chirp. In such a
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(a) (b)

Figure 3.7: Shapes (blue curve) and frequencies of a.) Gaussian and b.) bell-like laser pulses used
in the simulations presented as functions of time

case, we analyze the amplitude of the coherence ρg1g2 between the two meta-stable states |g1〉 and |g2〉,

where ρg1g2 = a1a
∗
2. Next, we study the dependence of the coherence amplitude on the pulse shape,

as well as on the frequency chirp dynamics. For this purpose, simulations with bell-shaped laser

pulses, f2 (t) = cosh−1 (t), and the time variation of the carrier frequency given by ϕ̇2 (t) = β tanh (t)

(see Fig. 3.7), are performed.

To have the numerical analysis adequately describing the experiment, some constraints must be

imposed on the parameters of the applied laser pulses. First of all, we assume that only sublevels

of the F = 1 hyperfine level are involved in the interaction. This means that both the width of the

Fourier spectrum of the envelope of the laser pulses and the frequency chirp span are smaller than

the frequency distance ∆F12 (∆F12 ≈ 6.83 GHz) between the two meta-stable (ground) hyperfine

levels F = 1 and F = 2 of 87Rb (see Fig. 3.5). For laser pulses with duration τp, the condition for

eliminating the F = 2 hyperfine level from the interaction is: 1/τp, βτp � ∆F12. Another constraint

has to be put on the duration of the laser pulses and the speed of the chirp. Namely, at any time

during the interaction, the frequency of the pulses must remain far from the single-photon resonance,

so the conditions given in Eq. (3.15) along with ∆ωp ≈ 1/τp � ∆0 need to be fulfilled, with ∆ωp

being the width of the Fourier spectrum of the pulse envelopes. At the same time the condition

∆0 � Γ has to be granted, where Γ is the natural line-width of the excited states in the case of

motionless atoms (for moving atoms, the role of Γ is played by the Doppler width of the relevant

transition). Since we use an adiabatic sweep of the laser frequency through the Raman resonance

and assume that the resonance takes place in the center of the pulses (t=0), the detunings (∓βτp)

from the Raman resonance at the leading and rear fronts of the pulse must be large: |β| > 1/τp.
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All these restrictions on the parameters were taken into account in the numerical simulations. The

Rabi frequencies for the allowed transitions from magnetic sublevels of the F = 1 level to the excited

states of the 52S1/2 → 52P3/2 transition in 87Rb were calculated using the values of dipole moments

for the corresponding transitions. In the simulations the following ”reduced” Rabi frequencies were

used: W1 =
(
E (0)

1 CJJ

)
/~ and W2 =

(
E (0)

2 CJJ

)
/~, where E (0)

1,2 are the peak amplitudes of the σ+ and

σ−-polarized laser pulses, respectively, while CJJ = 〈J = 1/2 ||er||J ′ = 1/2〉 is the reduced matrix

element (see, e.g. [111]). The dynamics of the populations of states |g1〉 and |g2〉 along with the

(a) (b)

(c)

Figure 3.8: Dynamics of the populations of the working levels labeled as in Fig. 3.6. |a1|2 and |a2|2
are the populations of the metastable states and |bl|2 are populations of the excited states in the case
of a.) linear and b.) nonlinear chirp. c.) The amplitude of the coherence ρg1g2 created between the
states |g1〉 and |g2〉 in the cases of the linear and nonlinear chirp. The simulations were performed
with the parameters W1 = 1565 [1/τp], W2 = 1329 [1/τp], ∆0 = 1500

√
2 [1/τp], and β = 30

[
1/τ 2

p

]
.

The durations of the laser pulses are τp =
√

2µs.

populations of the excited states in the field of the laser pulses are shown in Figs. 3.8(a) and 3.8(b)

for Gaussian shaped pulses and linear chirp of the frequency chirped laser pulse, and for the bell-

shaped laser pulse with the corresponding nonlinear chirp function, with initial preparation of the

atom in state |g1〉. The corresponding amplitudes of the created coherence |ρg1g2| are shown in

Fig. 3.8(c). As it can be seen in Fig. 3.8, the proposed scheme offers negligible atomic excitation and

generates maximum coherence. It is also worth noting that the dynamics of the induced coherence
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does not significantly depend on the exact laser pulse shape and frequency chirp behavior. The
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Figure 3.9: Dependence of the absolute value of the created coherence |ρg1g2| on the single-photon
detuning ∆0 and the speed of the chirp β at t = 0 in the case of: a.) linear (ϕ̇1 (t)), and b.) nonlinear
(ϕ̇2 (t)) chirp. The parameters applied are: W1 = 1442 [1/τp], W1 = 1280 [1/τp], ∆0 = 1500

√
2 [1/τp]

and τp =
√

2µs.

maximum value 0.5 for the created coherence may be achieved for some range of values for the

parameters of the laser radiation. Color maps showing the amplitude of the created coherence are

presented in Fig. 3.9 as a function of the single-photon detuning ∆0 and the chirp rate β for the two

types of the laser pulse shapes and frequency chirp behavior (see Fig. 3.7). It can be observed that

there are regions of values of ∆0 and β for which the coherence ρg1g2 reaches its maximum value. In

order to examine how the regions of the maximum coherence depend on the peak intensities (Rabi

frequencies) of the applied laser pulses, the coherence is calculated as a function of the Rabi frequency

of the laser pulses with fixed values for the other parameters corresponding to the region of maximum

coherence on the color maps in Fig. 3.9. This dependence is presented in Fig. 3.10 as a function

of the peak amplitude of the pulse with constant carrier frequency assuming a fixed product of the

peak intensities of the two pulses. The results of simulations for both Gaussian-shaped laser pulses

with a linear chirp and for bell-shaped pulses with the corresponding chirp function are presented in

Figs. 3.10(a) and 3.10(b). The results show weak dependence on the shape of the pulses and their

chirp functions. As it can be seen from both figures, the maximum value of the coherence is reached

at two different values of the laser peak intensity, nearly symmetrically located around the value at

which the Rabi frequencies of the laser pulses are equal to each other and no coherence is generated.

This result is in agreement with the previous analysis, (see Eq. (3.17) showing equivalence of the
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(a) (b)

Figure 3.10: Dependence of the ground-state coherence amplitude on the Rabi frequency of one of the
laser pulses with W1 ·W2 = const. The calculations are performed for the Gaussian-shaped pulse with
a.) linear chirp and b.) the bell-like pulse with chirp function ϕ̇2 (t) = β tanh (t). The parameters
applied in the simulations are ∆0 = 1500

√
2 [1/τp], β = 30

[
1/τ 2

p

]
, W1 · W2 = 14422

[
1/τ 2

p

]
, and

τp =
√

2µs.

multi-state system with a two-level atom) according to which a complete population is transferred

from one meta-stable state to the other one and no coherence between the two states is established.

Thus, the points of zero coherence in Figs. 3.10(a) and 3.10(b) represent the complete population

transfer between |g1〉 and |g2〉 which may be of interest for many applications.

3.4 Summary

Coherent coupling by a FC and a constant-frequency laser pulse has been analyzed in this chapter,

in two limiting cases. In both cases we regarded Λ-type configurations, where each pulses couple

a corresponding ground state to the excited state(s). The frequency of the chirped pulses is swept

through two-photon resonance. The difference between the two cases is made by the one-photon

detuning of the constant frequency pulse. In the first case we have assumed that it is exactly

resonant with an allowed transition of the atom, and thus during the interaction, one- and two-

photon resonance occurs in the same moment. On the other hand, in the second case we have

regarded the pulses are far detuned from the frequencies of transitions to any possible excited states.

We have seen that the two limits of one-photon detuning result in substantially different popula-

tion transfer mechanisms. First, when it comes for applying the scheme to real atoms, the resonance

condition makes it possible to use the simple atom model. In contrary, if the one-photon detuning

exceeds the splitting between the excited states of actual atomic level structure, several excited states
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are needed to be taken into account. On the other hand, the two cases also differ strongly in the

point of populating the excited state.

As our results show, the resonant limit of coupling results in creation of maximum coherence

between the excited state and the ground state driven by the constant-frequency pulse. It is demon-

strated that the scheme is robust against relatively large variations of the parameters of the laser

pulses. While the absolute value of the coherence does not depend on the phase relations between

the laser pulses and the chirp of the frequency modulated laser pulse, the phase of the coherence may

be controlled by the (constant) relative initial phase of the laser pulses and by the direction of the

frequency chirp. The underlying physics of the process can by explained by introducing symmetric

and anti-symmetric superpositional states.

The extreme robustness of the proposed scheme makes possible an effective generation of the same

(maximum) coherence between the ground and excited states in an atomic gas with approximately

the same value of the coherence across the laser beams even if the beams are tightly focused. This is

especially important when the prepared atomic medium is used for generation of high-order harmonics

requiring tight focusing of laser radiation for achieving ultra-high light intensities. In addition, since

robust control of the phase of the created coherence is possible simultaneously for all atoms in an

ensemble, the proposed scheme may also be applicable in other processes of coherent nonlinear optics

including nonlinear wave mixing and anti-Stokes or hyper-Raman scattering.

In the case of the far-detuned limit, in accordance with our anticipation, the majority of the

population remains in the ground states. Since the population of the excited states is negligible

during the whole interaction process, the system can be approximated by a two-level atom, with

an effective Rabi frequency. For a simple model atom including only one excited state, complete

population transfer is induced between the two states (which coincide with the original ground

states), via rapid adiabatic passage.

However, this simple model has to be reconsidered when we wish to describe the population

dynamics induced by the far detuned, circularly polarized pulses among the Zeeman-sublevels of a

real atom. In this case, we need to add an extra time-dependent term in the description, which

modifies the population redistribution process between the two states. Our result indicates that as

a result of the interaction, a superposition between the ground states is established, which depends

on the proportion of the peak amplitudes of the interacting laser pulses. We have shown that by
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properly choosing the parameters, maximum Zeeman-coherence is possible to create. Note that the

presented method allows coherent control of the Zeeman-sublevels without significant excitation of

the atom. Thus, it allows avoiding the decoherence due to the spontaneous emission from the excited

state.
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Chapter 4

Coherence creation in optically thick

medium

In the previous chapters, we concentrated on adiabatic control (AC) in single atoms and we re-

garded the laser pulses as given control tools. However, when AC is performed in an optically thick

medium [90–93], the back-action of the atoms on the laser fields and other effects, such as interaction

of the laser pulses with each other become important. Therefore, these effects are needed to be taken

into account and thus the laser fields turn to be regarded as dynamical variables from parameters.

In case of the interaction of an optically thick medium with a couple of quasi-resonant electro-

magnetically fields, two, interconnected problems emerge. The questions to be addressed are, in one

hand, that how the radiation field is affected by the medium while propagating in it and, on the

other hand, in which state the medium is driven by the propagating laser radiation.

Preparation of the atoms of a medium in coherent superposition of the quantum states may

significantly modify its optical properties leading to very interesting and important propagation

effects, like electromagnetically induced transparency (EIT). In the EIT-based schemes (see [36, 37,

94] and references therein), an intense laser-pulse (of constant carrier frequency) renders the whole

medium transparent for a weak probe pulse in Raman resonance with the intense one. In this scheme,

there is no substantial population redistribution.

Nearly lossless propagation was demonstrated in the case of constant frequency pulses having

identical [128] and complementary pulse envelopes [129], and also for a single FC laser pulse in

optically thick media consisting of lambda-atoms(see Fig. 1.2(a)) [91]. In the above mentioned

85



CHAPTER 4. COHERENCE CREATION IN OPTICALLY THICK MEDIUM

schemes, the lossless propagation of the electromagnetic field(s) was ensured by initially preparing

the medium to a dark superposition of the ground states. This means that no excitation occurs in the

atoms during the interaction, which significantly reduces the back-action of the atoms on the laser

field. As a result, basically the same population-control mechanism was established in the atoms of

the extended medium even for significant propagation distances.

On the other hand, it has been shown in [96] that for a sufficiently intense laser pulse pair having

constant frequencies in Raman resonance, lossless propagation is possible in a medium of Λ-atoms

even if the initial preparation of the atoms does not coincide with the dark state. The explanation

is that the laser pulses become distorted by the interaction with the medium in such a way that

the initial preparation of the atoms corresponds to a dark state for the pulse-pair after propagating

some distance. In this sense, the interacting laser pulses become matched to each other through

the interaction with the atoms of the medium. This matched-pulse case obviously differs from the

previous ones in the point that, in this case, the population-distribution process inside the medium

is significantly changed compared to the one at the boundary.

In earlier works of our group [75] and [77], several interaction schemes including single lambda-

atoms and FC pulses were considered. Comparing these schemes we may conclude that the population

transition process induced among the states of the lambda-atom depends on whether the coupling

of the two ground states are in Raman resonance. It was shown in [77] that a nearly excitation-free

population transfer may be established among the ground states with a single FC pulse which can

couple both of the transitions, provided that there is an energy difference between them (i.e. there is

a Raman detuning between the couplings). In [91], it was demonstrated that this scheme is possible

to be applied in optically thick medium for inducing a population transfer between the ground states

of the lambda-atoms which built up the medium.

In contrast, the action of a pair of strong Raman-resonant FC pulses on a single atom results in

adiabatic excitation of the bright component of the superposition of the ground states leaving intact

the dark component of this superposition [75]. As a result, a coherent superposition of the ground

states is robustly created along with excitation of the atom. This excitation, however, is detrimental

for the created coherence: One has to transfer the population of the excited state to another ground

state to preserve the created coherence from the destructive effect of the spontaneous decay.

In this chapter, we examine the possibility of applying this interaction scheme containing a
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Raman-resonant pulse pair in optically thick medium of lambda-atoms. We investigate whether the

Raman-resonant pulse pair is able to propagate in the medium despite of the fact that, unlike the

Raman-detuned case, it causes a significant excitation in the atoms at the boundary. Based on the

similarities of our case to the one analyzed in [96], we anticipate that there is a matching effect for

frequency-modulated laser-pulse pairs as well.

We are also interested in the population transfer mechanism which is induced by the potentially

propagating laser pulses inside the medium, which may differ strongly from the one at the boundary

of the medium because of the distortion in the laser pulses caused by the macroscopic polarization.

Our aim is to find a mechanism which is suitable for preparing the majority of the atoms in the

medium in a controllable superposition of their the ground states.

4.1 Propagation of a Raman-resonant FC pulse pair in an

optically thick medium consisting of lambda-atoms

4.1.1 Mathematical formalism

We use the semiclassical approach introduced in Section 1.2 for studying the propagation of the FC

pulses in a medium consisting of Λ-atoms in one given direction. The internal electronic state of

the atoms is treated in the frame of quantum mechanics, while the laser pulses are described by the

classical electric field

~E (x, t) =
2∑
i=1

~εi
[
Ei (x, t) · e−i(ωit−kix) + c.c.

]
, (4.1)

and their propagation is described by the by the Maxwell equation. Here we have used the same

notations as in(1.7), i.e. Ei (x, t), ωi and ki denote the envelope function, the central frequency and

the wave vector of the ith pulse (i ∈ {1, 2}), respectively. The medium in which this classical pulse

pair propagates is modeled by identical, noninteracting and motionless λ-atoms, which are initially

prepared in one of their ground state (for example, in |2〉).

We assume that the requirements for the time scales and the couplings given in subsection 1.1.7

are fulfilled. Namely, the both dipole-allowed transitions of the lambda-atoms are separately coupled
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Figure 4.1: Level scheme of the lambda-atom. The dipole-allowed transitions (between the excited
state |0〉 and the lower metastable states |1〉 and |2〉, respectively) are each coupled by a frequency
modulated (FC) laser pulse. In this chapter, we consider Raman-resonant coupling, i.e. δ1 = δ2 = 0.
The atoms are initially prepared in state |2〉.

by a laser pulse having an envelope slowly varying in space and time. In accordance with this

assumption, we describe the system in the frame of the rotating wave and the slowly varying envelope

approximations (see subsecs. 1.1.3 and 1.2.2). The interaction of an arbitrary atom localized in the

region [x, x+ δx] with the laser pulses is described by the interaction Hamiltonian (cf. Eq. (1.22) )

Ĥ (x, t) = −~
2∑

k=1

[
−δ|k〉〈k|+

(
1

2
Ωk (x, t) |0〉〈k|+ H.c.

)]
, (4.2)

where Ωk (x, t) = |Ωk| · e−iφk(x,t), k ∈ {1, 2} is the Rabi frequency (see Eq. (1.17)) of the kth laser

pulse, with the change of the frequency included in the phase φk (x, t). In the considered case, the

propagating pulse pair is in Raman resonance, which means that their central frequencies (ω1 and

ω2) are detuned from the corresponding transition frequencies by the same amount of δ. For the sake

of simplicity, we now set this common detuning to be zero.

For later convenience it is worth introducing

ξ = x/ξ0 (4.3a)

τ = (t− x/c) /τσ (4.3b)

dimensionless, retarded space and time coordinates. The time is measured in the unit of τσ, which

characterizes the duration of the pulses. For the normalization of the space coordinates we introduce

the absorption length of a laser pulse of constant frequency ωL in a medium consisting of resonant
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two-level atoms with a density of N , which is given by [39]

ξ0 =
ε0~c

NωL |dA|2 T
, (4.4)

where T is the natural lifetime of the excited state and dA is the dipole moment of the coupled atomic

transition. Although there are two atomic transitions in the present case, it is consistent with our

previous approximations to regard a common absorption length for both coupling pulses by setting

|d01| = |d02| = dA, ωL = (ω1 + ω2) /2 and T = 2/Γ1 = 2/Γ2 = 2/Γ, where Γi is the longitudinal

relaxation rate from the excited state |0〉 to the metastable state |i〉, i ∈ {1, 2}.

We describe the response of the atoms for the ingoing laser radiation inside a certain space-interval

by the master equation

∂τ ρ̂ (ξ, τ) =
1

i~

[
Ĥ (ξ, τ) , ρ̂ (ξ, τ)

]
− 2Γ|0〉〈0|ρ00 (ξ, τ) +

2∑
k=1

[Γρ00 (ξ, τ) |k〉〈k| (4.5)

− (Γρ0k (ξ, τ) |0〉〈k|+ H.c.)] ,

where ρkl = 〈k|ρ̂|l〉 and ρ̂ (ξ, τ) is the average density matrix defined in Eq. (1.43). Since the change

in the electromagnetic field is neglected inside a small segment, the Hamiltonian Ĥ (ξ, τ) which drives

the evolution of the average density operator is formally the same as in Eq. (4.2).

The atoms of the medium may affect the propagating laser pulses by means of basically two

mechanisms: by spontaneous emission from the excited state and by dipole-radiation [96]. In the

present case, we regard a weakly decaying regime: we assume that the lifetime of the excited state is

about an order of magnitude longer than the pulse duration. The action of the atomic dipoles on the

laser radiation propagating in the field can be taken into account by the macroscopic polarization

of the medium. This polarization, induced by the laser fields at a certain space segment [ξ, ξ + δξ]

(see Eq. (1.42)) is proportional to the average of coherences ρ01 and ρ02 between the ground states

|1〉 and |2〉 and the excited state |0〉 of the atoms located there. Pursuing the deduction presented

in sec. 1.2, we have the following equation for the Ωk Rabi frequency of the kth laser pulse:

∂

∂ξ
Ωk (ξ, τ) = iαρ0k (ξ, τ) , k ∈ {1, 2} . (4.6)
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Note that this differential equation system is analogous with Eq. (1.50), although it has a simpler form

in the retarded coordinates given by Eq. (4.3). We assume that the coupling strength between both

laser modes and the corresponding dipole transitions are the same and described by α = τσ/ (2T ).

This assumption is valid for example for two laser pulses having σ+ and σ− polarizations, interacting

with a F = 1→ F ′ = 0 transition of an atom.

In order to study the behavior of the propagating FC pulses and the atomic transitions induced

by the laser field, we solve the system of differential equations formed by Eqs. (4.5)) and (4.6)

numerically. We use the following boundary conditions of two Gaussian, linearly chirped pulses

entering the medium at ξ = 0 (see Fig 4.2(a)):

[
Ω1 (ξ = 0, τ)
Ω2 (ξ = 0, τ)

]
=

[
ϑ1

ϑ2

]
e−τ

2( 1
2

+iβ), ϑk ∈ R ∀k ∈ {1, 2} (4.7a)

ρ̂ (ξ, τ → −∞) = |2〉〈2|, (4.7b)

where ϑ1 and ϑ2 are the peak amplitudes of the laser pulses at the entrance of the medium. The

parameters {ϑ1, ϑ2, β, τσ} in what follows are chosen in such a way that the conditions of adiabaticity

(see subsec. 1.3) are fulfilled.

Symmetric-antisymmetric basis

For further investigation of the population dynamics in arbitrary segments of the medium, it is useful

to introduce a basis transformation on the atomic states adapted to the boundary conditions given

in Eq. (4.7), which leads us to the following symmetric-antisymmetric basis:

{|0〉, |s〉, |a〉} =

{
|0〉, ϑ1|1〉+ ϑ2|2〉

ϑ

ϑ2|1〉 − ϑ1|2〉
ϑ

}
,where ϑ =

√
ϑ2

1 + ϑ2
2. (4.8)

The Hamiltonian in this new basis becomes

Ĥsa (ξ, τ) = −~
∑
j∈s,a

[Ωj (ξ, τ) |0〉〈j|+ H.c.], (4.9)
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where we have defined the effective Rabi frequencies as

[
Ωs

Ωa

]
=

[
(ϑ1Ω1 + ϑ2Ω2) /ϑ
(ϑ2Ω1 − ϑ1Ω2) /ϑ

]
(4.10)

for the couplings between the excited state |0〉 and the symmetric and antisymmetric superpositional

states |s〉 and |a〉, respectively. The spatial dependence of the coupling obeys formally the same

differential equation as the original Rabi frequencies:

∂ξΩj = −iαρj0, j ∈ {s, a} , ρj0 = 〈j | ρ̂ | 0〉 (4.11)

where ϑk ∈ R ∀k ∈ {1, 2} was utilized. Transforming the boundary conditions according to Eq. (4.10)

(a) (b)

Figure 4.2: Boundary conditions given in a.) the original atomic basis b.) the symmetric-asymmetric
basis. All the atoms in the medium are initially prepared in the metastable state |2〉, which corre-
sponds to a coherent superposition in the symmetric-antisymmetric basis given by the peak ampli-
tudes ϑ1 and ϑ2 of the ingoing laser pulses.

yields a set of boundary conditions which is more convenient for our purposes, as it only contains

one ingoing laser mode (see Fig 4.2(b)):

[
Ωs (ξ = 0, τ)
Ωa (ξ = 0, τ)

]
=

[
ϑ
0

]
e−τ

2( 1
2

+iβ), (4.12a)

ρ̂ (ξ, τ → −∞) =
1

ϑ2
(ϑ2|s〉 − ϑ1|a〉) (ϑ2〈s| − ϑ1〈a|) . (4.12b)

Rotating basis for the adiabatic approximation

In order to use the adiabatic approximation for the dynamics of the state of the atoms in a certain

space segment, we need to describe their interaction with the laser radiation using an interaction
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picture in which the interaction Hamiltonian only contains slowly varying matrix elements (in the

scale of the interaction time). It follows from the form of the boundary conditions (4.12) that the Rabi

frequencies Ωj, j ∈ {a, s} (as well as Ωk, k ∈ {1, 2}) contain a time-dependent phase, which may

prevent us from applying the adiabatic approximation for the eigenstates of the Hamiltonian (4.2).

Instead, we have to describe the atomic dynamics in each segment by using the following rotating

basis vectors which suits to the phase dependence of the coupling (cf. (1.23)):

{|0〉, |s̃〉, |ã〉} ≡
{
|0〉, |s〉e−iφs(ξ,τ), |a〉e−iφa(ξ,τ)

}
. (4.13)

Very similarly to Eq. (1.28), the interaction Hamiltonian in the rotating basis reads as

Ĥsa = −~
∑

j∈{s,a}

[
∂τφj (ξ, τ) |j̃〉〈j̃|+ 1

2

(
|Ωj (ξ, τ)| |0〉〈j̃|+ H.c.

)]
,

φj, j ∈ {s, a} being the phase of the Rabi frequency Ωj, j ∈ {s, a} (c.f. Eq.(1.17)). Note that this

transformation does not change the absolute values of the coefficients in the system’s state vector.

4.1.2 Atom-laser interaction near the boundary of the medium

We first describe the interaction of the atoms with the Raman-resonant FC pulse pair at the boundary

of the medium in the symmetric-antisymmetric basis. (The results are also valid approximately for

an optically dilute medium). It is easy to see from Eqs. (4.14a) and (4.12) that the antisymmetric

state |ã〉 is an eigenstate of the Hamiltonian Ĥsa (ξ = 0, τ) since the coupling Ωa is 0 for ξ = 0.

Thus, it remains unchanged during the interaction. The other metastable state |s̃〉 and the excited

state |0〉 form a two-state atom coupled by a FC pulse. As we have discussed in subsec. 1.3.3, the

FC pulse drives a rapid adiabatic passage from state |s̃〉 to the excited state |0〉, [41] (see Fig. 4.3).

Since the antisymmetric state is decoupled from the excited state, it represents a dark state for

the Raman-resonant FC pulses. Similarly to the original case of constant frequency matched pulses

propagating in media of Λ-atoms [95, 96], the initial preparation of the atoms given in Eq. (4.12) does

not coincide with the ”dark” state. Based on the above considerations in the frame of the adiabatic

approximation, the atoms at the boundary are expected to be transferred from a superposition of

the ground states |s̃〉 and |ã〉 to a superposition of states |s̃〉 and the excited state |0〉. This result is
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Figure 4.3: Eigenvalues of the Hamiltonian Ĥsa (Eq. (4.14a)) which describes the atom-laser system
at the boundary of the medium (ξ = 0). The eigenvalues belonging to the diabatic states are plotted
with dashed lines which correspond to states |0〉, |s̃〉 and |ã〉, respectively. The eigenvalues of the
adiabatic states are plotted with solid lines. The antisymmetric state |ã〉 is an eigenstate of the
Hamiltonian Ĥsa with an eigenvalue of λ1 = 0. The eigenstate belonging to λ2 evolves from the
excited state |0〉 to the symmetric state |s̃〉, while the other eigenstate belonging to λ3 follows the
inverse path (|s̃〉 → |0〉).

in perfect agreement with the numerical solution of the master Eq. (4.5) at ξ = 0, which is depicted

in Fig. 4.4.
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0.6

Figure 4.4: Dynamics of the atomic populations in the symmetric-asymmetric basis at the boundary
of the medium. The parameters used for calculation are ϑ1 = 30 [1/τσ], ϑ2 = 27 [1/τσ], β = 7 [1/τ 2

σ ].

In order to understand the laser propagation, it is important to analyze the time evolution of

the coherences ρ0a and ρ0s. The behavior of the absolute values of the coherences (see Fig. 4.5(a))

are easily understood from the predictions of the adiabatic approximation. Since there is a complete

population transfer between states |s〉 and |0〉, the absolute value of the coherence between them is 0

in the beginning and at the end of the interaction, and only differs from zero during the population

transfer with a maximum value of ϑ2
2/ (2ϑ2). The time evolution of |ρ0a| is determined by the change

of the population of the excited state |0〉 in time, since the population of state |a〉 remains unattached,

as it is a dark eigenstate of the dressed atoms at the boundary of the medium.

In parallel with the excitation of the atom, a coherence ρ0a = ϑ1ϑ2/ϑ
2 is established as a result

of the interaction. The time evolution of the phase of ρ0s is determined by the phase of the coupling
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Figure 4.5: Time evolution of a.) the absolute value and b.) the phase of the atomic coherences at
the boundary of the medium. For the absolute values of the coherences, the solid lines show the result
of the numerical solution of the master equation for ξ = 0 using the same parameters that are given
in Fig. 4.4. In the case of the phase of the coherences, the dots represent the result of the numerical
solution, and the solid lines are the fitted functions: The function β0 + β1τ

2 is fitted on the values of
ρ0s (ξ = 0, τ) and on ρ0a (ξ = 0, τ < −1.5τσ) with the fitting parameters of {βs1 = −6.99, βs0 = 0.04}
and {βa1 = −7.01, βa0 = −34.35}, with βs0 − βa0 = ∆φ = 10π + 0.95π. A different function determines
the time evolution of ρ0a (ξ = 0, τ > −1.5τσ): the function α0 + α1 exp (−π exp [α2τ ] /2) is fitted on
the values, with the parameters {αa0

0 = −0.78, αa0
1 = −80.12, αa0

2 = 0.76}

pulse Ωs, which is set to be linearly chirped. Indeed, it is clearly seen from Fig 4.5(b) that the

quadratic function β0 + β1τ
2 accurately fits the numerically calculated results of arg (ρ0s). The

behavior of the phase of the coherence between the excited and the asymmetric ground state ρ0a is

more complicated. Its time function starts as the same quadratic one as for ρ0s, but the evolution

changes approximately at τ = −1.5τσ, and it tends to a constant value as α0+α1 exp (−π exp [α2τ ] /2).

Note that the complex phase functions can be tuned by n × 2π, n ∈ Z, thus the fitting parameters

β0 and α0 are undetermined up to a free constant times 2π.

4.1.3 Dynamics of the atoms inside the medium

Let us now consider the time and space evolution of the effective Rabi frequencies Ωs and Ωa. In the

symmetric-antisymmetric basis, only one strong coupling field (Ωs) enters the medium of Λ-atoms,

which are prepared in a superposition of states |a〉 and |s〉 (c.f. Eq. (4.12)). In the course of the

coherent transition process between the atomic states induced by Ωs, a coherence is established

between the asymmetric and the excited state of the atoms close to the boundary, with a time

function of its phase described in the previous subsection (c.f. Fig 4.5). This coherence generates

the laser field Ωa, which strongly influences the transition process between the atomic states in the
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further part of the medium (see Fig. 4.6). Namely, the majority of the population is transferred into

the asymmetric state |a〉, and the excitation of the atom is drastically reduced (it does not exceed

5% during the whole interaction). Thus, although complete population trapping is not established

as in the case of the constant frequency matched pulses [96], a quasi-dark state is created by the

two modes Ωs and Ωa. The absolute values of the atomic coherences ρ0a and ρ0s become smaller for
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Figure 4.6: Dynamics of the populations of the atomic states inside the medium (ξ = 40ξ0) in
the symmetric-asymmetric basis. The parameters used for the calculation are the same as given in
Fig. 4.4.

atoms at larger propagation distance ξ, and the time function of their phases has the same character

at any propagation length (see Fig. 4.7). An important difference can be observed compared with

the case of ξ = 0: at the time points where |ρ0a| = 0, there is a jump of π in the phase arg (ρ0a). This

jump occurs because the sign of the coherence changes at these points, which indicates an oscillating

behavior of the populations and coherences induced by the interaction with the pulse pair of Ωs and

Ωa. The time evolution of the absolute values and phases of the effective Rabi frequencies Ωa and

Ωs at a given space point of the medium (ξ = 40ξ0) is presented in Fig. 4.8. The coupling field Ωs

is only slightly modified during the propagation. The pulse envelope remains Gaussian with a good

approximation after a propagation of multiple times of the absorption length ξ0. The change in the

envelope of the effective Rabi frequency Ωs is presented in the inset of Fig. 4.8(a). It can be observed

that after 40ξ0 of propagation, the distortion from the boundary condition is less than 4% of the

pulse area. The phase function with respect to time inside the medium also has the same character as

at the boundary: the same quadratic function β0 + β1τ
2 fits the data in Fig. 4.8(a), so the frequency

of this effective field changes linearly in time. Thus, the incoming laser mode Ωs preserves its initial

properties during the propagation in the medium, with only a small loss in the pulse envelope. It is

worth noticing that the presence of this loss is crucial for this quasi-lossless propagation mechanism,
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Figure 4.7: Time evolution of the absolute values and phases of the atomic coherences ρ0s (a.) and
ρ0a (b.) inside the medium (ξ = 40ξ0). (Inset: Magnification of the plot showing the time evolution
of the phases between τ = −1 and τ = 4.) The solid lines in case of the absolute values and the dots
in case of the phases are results of numerical calculation with the same parameters as in Fig. 4.4.
The solid lines that connect the dots are functions fitted on the points. The same fitting functions
were used as in case of the coherences at the boundary (see Fig. 4.5) and the fitting parameters also
proved to be the same. The only exception is β0 which needs to be shifted by π at the point where
there is a jump in the data.
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Figure 4.8: Absolute values and phases of the effective Rabi frequencies Ωs (a.) and Ωa (b.) as a
function of the retarded time at a fixed space point inside the medium (ξ = 40ξ0). (Inset: Mag-
nification of the plot showing the time evolution of the phases between τ = −1 and τ = 4.) The
parameters used for the calculation are the same as given in Fig. 4.4. The solid lines in case of the
absolute values and the dots in case of the phases are results of the numerical calculation. The solid
lines that connect the dots are functions fitted on the points. The same fitting function was used as
in case of the coherences, except for the constants, which are shifted by 3π/2 (see Fig. 4.5)

because the generated field Ωa gains its energy from it. Since the source of this field in the Maxwell

equation is proportional to the coherence between the excited and the asymmetric ground state |a〉,

it is plausible that the phase evolution of both the Rabi frequency Ωa and the coherence ρ0a possess

a very similar character (c.f. Figs 4.7(b) and 4.8(b)). As it is demonstrated in Fig. 4.8(b), the same
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curve fits the numerical values of Ωa as in the case of the coherence ρ0a at the boundary as well as

inside the medium, with almost the same fitting parameters. The only difference is a shift of −3π/2

in the constant parameters α0 and β0. Similarly to the coherence ρa0, the induced Rabi frequency

Ωa shows an oscillatory behavior, and there is a phase-jump of π in the phase at every retarded

time point where Ωa = 0. The time evolution of its phase is close to constant for approximately

τ > 1.5τσ. This means that the excited and the asymmetric ground states |0〉 and |a〉 are coupled

by a train of small resonant pulses having nearly constant frequency, with a phase difference of π

between the adjoining pulses. The pulse areas of these small pulses are much less than π, thus as a

result of the interaction with one pulse, a small part of a Rabi-cycle proceeds between states |0〉 and

|a〉. After this interaction, the process is reversed because of the next pulse which has an opposite

sign (π phase-shift). Once this oscillation appears in the coherence ρ0a, it affects the formation of

the field Ωa, that is why the further this pulse propagates the smaller pulses appear (see Fig. 4.9).

Figure 4.9: Absolute value of the effective
Rabi frequency Ωa as a function of the re-
tarded time coordinate and the propagation
distance. The parameters used for the calcu-
lation are the same as in Fig. 4.4.
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Figure 4.10: Final populations of the atoms
at different space points ξ in the symmetric-
antisymmetric basis. The same parameters
were used for the calculation as in Fig. 4.4.

Our calculations show that the population control process induced by the laser pulse pair changes

in the course of their propagation in the medium. At the boundary and within one absorption length

ξ0, a significant part of the population is transferred into the excited state. After a few absorption

lengths, the excitation of the atom decreases, and although shows an oscillatory behavior, it is always

below 5% for atoms that are located at space positions ξ > 6ξ0 (see Fig. 4.10).

Notice that from a small distance away from the boundary, the final population of the symmetric

state |s〉 is zero (up to the precision of the calculation). It is an important feature, because it means

that the final population distribution among the atomic ground states is exactly determined by the
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antisymmetric superposition |a〉. This property is different compared to the case of the matched

pulses with constant frequency [96], where a small amount of population is always transferred into

the symmetric state. From the temporal behavior of the eigenvalues of the interaction Hamiltonian

Ĥsa (see Fig. 4.11) one can see that frequency modulation is the cause of the difference. It is known

from the literature (see e.g. [130] and references within) that in the constant-frequency case, the

transparency occurs through a STIRAP-like mechanism. Namely, as a result of the action of the

atoms of the medium, one of the coupling pulses is shifted in time so that population trapping is

established, and the excited state is decoupled from the system. The final distribution of the popu-

lation among the ground states is determined by the intensities of trailing edges of laser pulses [92],

which may significantly vary at different locations.

On the other hand, the frequency modulation of the incoming laser mode Ωs defines a different

transfer process in the atoms of the medium. We have already seen that at ξ = 0 there is an

avoided crossing between two eigenvalues (λ2 and λ3) with a gap between them. This gap is large

enough to restrain the mixing of the populations initially set into the eigenstates belonging to the

two eigenvalues (let us denote them by ~v2 and ~v3, respectively), that is why it is possible to use the

adiabatic approximation. If we regard the eigenvalues of the interaction Hamiltonian which describes

the dynamics inside the medium (ξ � ξ0), we notice that a practically same gap characterizes the

spectrum, so the subspace spanned by ~v2 is separated just like for the Hamiltonian at ξ = 0. The

difference between the eigenvalues typical for ξ = 0 and ξ � ξ0 is caused by the appearence of the

coupling field Ωa, which is generated by the back-action of the atoms of the medium. In the presence

Figure 4.11: Eigenvalues of the Hamiltonian Ĥsa (Eq. (4.14a)) which describes the atom-laser system
far from the boundary of the medium (ξ = 40ξ0). The notations are the same as in Fig. 4.3

of the coupling Ωa, the space of states is divided to a temporarily degenerate subspace spanned by

the eigenstates ~v1 and ~v3 belonging to the eigenvalues λ1 and λ3, and to the subspace of ~v2. As the
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atoms are prepared in the superposition of |a〉 and |s〉, the whole process takes place in the former

subspace, which indicates that the population of the symmetric state |s〉 becomes 0 at the end of

the interaction. (However, because of the degeneracy, the suppression of the excitation cannot be

explained in the frame of this adiabatic picture.)

4.1.4 Description of the system in the original basis

From the point of view of possible applications it is useful to ”translate” our results into the

symmetric-asymmetric basis and with the effective couplings Ωa and Ωs to the original atomic basis.

In Fig. 4.12 the population transfer process is presented in the original atomic basis at the boundary

and at a given propagation length inside the medium (ξ = 40ξ0). At the boundary, the Raman-

resonant pulse pair induces a coherent population transfer which distributes the population initially

prepared in state |2〉 into a superposition of the three atomic states. The population of the excited

state as a result of the interaction with the pulse pair is ρ00 = ϑ2
2/ϑ

2 coinciding with the population of

state |s〉 at the beginning of the interaction, while the populations that remain in the ground states

after the population transition process are ρ11 = (ϑ2
1ϑ

2
2) /ϑ2 and ρ22 = ϑ4

1/ϑ
2, respectively (which

coincides with the initial population of the asymmetric state |a〉).

Note that the requirement of Raman resonance between the couplings plays an important role

in the whole process. That is, a substantially different population evolution is induced by Raman-

detuned couplings of the two allowed transitions [77], which leads to population transfer between

the ground states, along with negligible excitation of the atom. Thus, in the Raman-detuned case,

the initial preparation of the atoms (Eq. (4.7)) coincide with the dark state, and, as it was shown

in [91], results in a quasi-lossless propagation of the coupling FC pulse in the medium accompanied

by the same induced population transfer mechanism inside as at the boundary. In contrast, in the

present case including Raman-resonant coupling, both the pulse envelopes and the time function of

the phases of the pulses are modified by the interaction with the medium after a short propagation

length. The modification takes place in such a way that instead of exciting the atom, the pulses

drive the main part of the population into the (ϑ2|1〉 − ϑ1|2〉) /ϑ superposition of the ground states,

which is the asymmetric state |a〉 (see Fig. 4.14).

Note that, similarly to the constant frequency case [96], not all the population is transferred to
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Figure 4.12: Evolution of the populations as a function of the retarded time τ a.) at the boundary
and b.) at a typical propagation length inside the medium (ξ = 40ξ0). The parameters used for the
numerical calculations are the same as in Fig.4.4.

the asymmetric superposition. In case of the FC pulse pair it is the excited state which is slightly

populated but in the weakly decaying regime under consideration this does not disturb significantly

the preparation of the medium into a well-defined superpositional state controlled by the peak Rabi

frequencies of the ingoing pulses, as is shown in Fig. 4.13(a). Fig. 4.13(b) demonstrates the advantage

of the frequency modulation of the laser pulses. Since the matched pulses having constant frequency

transfer a varying (though small) amount of population into the symmetric superposition |s〉 in case

of atoms at different space points ξ, the induced population distribution among the atomic states

changes significantly as a function of ξ (see Fig. 4.13(b)). The Rabi frequencies can be expressed

0 10 20 30 40 50 60

0 1 2 3 4 5 6
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Figure 4.13: Final populations of the atoms at different space points ξ in case of a.) frequency-chirped
b.) constant frequency pulse pair. Inset: Final populations close to the boundary (ξ ≤ 6ξ0) for a FC
pulse pair. After a few absorption length ξ0 of propagation, the FC pulse pair transfers the majority
of the atomic population to the antisymmetric superposition of the ground states, while in case of
the matched pulses having constant frequency, the final state strongly varies with ξ. The parameters
used for calculations are: ϑ1 = 30 [1/τσ], ϑ2 = 27 [1/τσ], β = 7 [1/τ 2

σ ] and β = 0, respectively.
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Figure 4.14: a.) Envelope functions of the pulses at the boundary (dashed lines) and at ξ = 40ξ0

(solid lines) b.) The phases of the Rabi frequencies as a function of the retarded time τ at the
boundary (dashed lines) and inside the medium (solid lines). The same parameters were used for
numerical calculation as given in the caption of Fig.4.4.

by the symmetric and asymmetric Rabi frequencies as

Ω1 =
ϑ1

ϑ
Ωs +

ϑ2

ϑ
Ωa (4.14a)

Ω2 =
ϑ2

ϑ
Ωs −

ϑ1

ϑ
Ωa. (4.14b)

As the pulses propagate in the medium, energy is transferred from Ω2 (which couples the transition

where the atoms are prepared) to Ω1. Since Ωa is one order of magnitude weaker than Ωs, even

after propagation length of many times ξ0 (c.f. 4.8), the distortion is small. In this sense it can be

stated that the FC pulse pair propagates quasi-transparently and that it can prepare a well-defined

coherent superposition of the ground states in an extended medium of great optical depth.

4.1.5 Summary

We have analyzed the propagation of a pair of Raman-resonant, linearly frequency modulated strong

laser pulses in an optically thick medium, which is modeled as a motionless and noninteracting

ensemble of Λ-atoms. We have demonstrated that quasi-lossless propagation of FC pulses is possible

not only when the medium is initially prepared in a quasi-dark state [91], but through a matching

effect between the two pulses. Namely, although the Raman-resonant pulse pair causes a significant

excitation in the atoms close to the boundary of the medium, the excitation of the atoms becomes

negligible in the medium at larger propagation length. Excitation of the atoms near the boundary
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of the medium, however, plays an important role in generation of a macroscopic polarization, which

interaction with the FC pulses results in the matched quasi-lossless propagation of the pulses in the

optically thick medium.

By analyzing the dressed states of the atoms, we have demonstrated that the FC pulse pair

induces a population transfer mechanism substantially different from the transfer process typical

for the matched pulses having constant carrier frequency. The FC pulse pair, in the course of its

propagation transfers the majority of the atoms of the medium into approximately the same coherent

superposition of their ground states. In contrary, the population distribution among the ground states

induced by the constant frequency pulse pair may change significantly at different locations in the

medium.

We have shown that the composition of the coherent superposition, established by the propagating

FC pulse pair, depends on the peak amplitudes of the these laser pulses at the boundary of the

medium. Therefore, the magnitude of the coherence created by the interaction may be tuned by

parameters which are easily controllable experimentally.

The obtained results, especially those concerning the robust creation of coherence between atomic

metastable (ground) states in a spatially extended, optically thick medium may find important

applications in schemes of frequency conversion through nonlinear optical mixing processes, as well

as in other nonlinear processes where the initial preparation of an extended medium in a coherent

superposition state is needed.
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Summary

Control of atoms or atomic ensembles by laser radiation is an important and quickly developing field

of quantum optics, which serves as a basic tool in numerous significant fields of modern physics,

such as trapping and cooling of atoms and molecules [10–13], nonlinear optics[24–38], processing of

optical information [17, 21–23], quantum computation [14–20] and many others.

One of the main tasks to achieve is coherent preparation of the atomic inner state, that is, the

state of the valence electron of the atom, for which a large variety of techniques exists. A laser

pulse, resonant with an atomic transition, induces Rabi oscillation occurs between the population of

the atomic states. The population distribution established by the laser depends on the area of the

Rabi-frequency. Complete population inversion may be established for example, if this area equals

(2k + 1) π, k ∈ N. However the sensitivity of this scheme to variations of the pulse area and the

resonance conditions results in difficulties in experimental realization [39].

More robust control of the atomic states are allowed by adiabatic control(AC) schemes[40–42]

which are based on gradually tuning one of the interaction parameters in time in order to drive the

atomic populations along the adiabatic states of the system.

One of the most-used AC schemes is Stimulated Raman Adiabatic Passage (STIRAP) [40, 41, 45–

52], where the control of the states of a Λ-atom is achieved by two, constant-frequency laser pulses,

time-delayed in the counter-intuitive order. Being sensitive to the two-photon resonance conditions,

this scheme allows complete population transfer between the ground states, without excitation of the

atom. With some extensions to the STIRAP scheme [53–59], coherence creation among the atomic

states is also possible.

Another, widely applied AC method is rapid adiabatic passage (RAP), which is based on varying

the detuning between the frequency of the interacting laser fields and the atomic transitions in

time [60]. One possibility is using laser fields with constant carrier frequency and shifting the energy
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level of the atomic excited state, as it happens in case of Stark chirped rapid adiabatic passage

(SCRAP)[61–66] by making use of the Stark-effect. This method is not sensitive to the resonance

conditions, but the population transfer occurs along with temporary excitation of the atom.

An alternative method for preforming ARP is the application of frequency-modulated (chirped)

laser pulses in the atom-laser interaction [67–80]. Several arrangements were proven useful[12, 70, 73–

78, 81–85] for various control problems by using FC pulses. A group of these works concentrated on

coherent population using one FC pulse transfer between ground states of Λ [74, 77]- and tripod-

atoms [78], with the priority of avoiding the excitation of the atom, in optically dilute and, for

Λ-atoms [91], optically thick medium. On the other hand, it was also shown that by using more than

one laser modes, a greater freedom is achievable in controlling the induced population distributions

in Λ-atoms [73, 75]. Altough this scheme has the drawback of populating the atomic excited state it

was proposed to be applied for optical information mapping.

Objectives

Motivated by these results, this dissertation concentrated, on one hand, on upgrading the previous

control schemes using FC pulses in order to unify their advantages. That is, one of our objectives

was to develop a control scheme using a limited number of FC pulses which possesses the following

characteristics. It is suitable for creating coherent superposition of the ground state of the atom,

which can be adjusted by easily controllable parameters of the interacting laser pulses such as the

peak intensities or constant phase difference. In order to avoid decoherence effects due to the finite

lifetime of the excited state, we put emphases on avoiding the excitation of the atom.

Another goal was to widen the range of possible applicability of FC pulses by combining them

with constant-frequency pulse. We aimed to consider control schemes in Λ-atoms which incorporate

instantaneous Raman-resonance and to prove them useful in applications.

In optically thick medium, the coherent control processes may be modified by the back-action of

the medium on the interacting pulses and other propagation effects. For nonlinear optical applications

it is necessary to take these effects into consideration. In our work, we would also like to discover an

interaction scheme using FC pulses which is applicable for preparing the majority of the atoms in a

coherent superposition of their ground states, in an externally adjustable way if possible.
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We have already given a detailed summary on our results at the end of each chapter. Here, let

us formulate our achievements in theses.

Theses of the dissertation

1. We have proposed a new interaction scheme for creating coherent superposition among the

metastable (’ground’) states of an atom having tripod-structure as working levels (’tripod-

atom’), along with negligible excitation. The method is based on adiabatic control of the

atomic states by three laser pulses with the same (linear) modulation (’chirp’) in their carrier

frequencies, each of them separately coupling one dipole allowed transition of the atom. We

have shown by analyzing the time evolution of the adiabatic states that if two pulses are

in Raman resonance with the corresponding atomic transitions and the third one is Raman-

detuned, two different population-redistribution mechanism may be achieved by changing the

sign of the Raman detuning, without significant population appearing in the excited state

during the interaction.

By numerically solving the master-equation of the system, we have demonstrated that the

scheme can be used even if the lifetime of the excited state is a tenth of the interaction time.

We have found that coherence can also be created between the ground states in the presence of

stronger spontaneous decay from the excited state, with a π phase factor of difference compared

to the non-decaying case.

We have demonstrated that the presented scheme may be applicable in (optically dilute) atomic

gas of room temperature in case of fast enough frequency modulation and copropagating pulses,

since the chirp is capable to compensate for the Doppler-effect. [I, II]

2. We have proposed a method for robust writing and storage of optical phase information into

the populations of the ground states of a tripod atom using three frequency-chirped laser

pulses, two in Raman resonance and the third Raman-detuned from the corresponding atomic

transition (the same arrangement as in thesis 1). The scheme is based on the fact that after

preparing the atom in a coherent superposition of the two ground states coupled by two pulses

in Raman resonance, the population of the third ground state established by the interacting

pulses is a cosine-function of the phase difference of the pulses in Raman resonance. Since the
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information is mapped into the population of the atomic ground states, the proposed method

provides much longer storage times compared with the schemes based on the collective atomic

spin coherences, being only restricted by the lifetime of the ground states.

We have shown that the presence of weak longitudinal and transverse relaxation affects the

contrast of the mapping process: 50% of contrast can be achieved if the duration of the in-

teraction is smaller than a tenth of the coherence lifetime and 10 times of the lifetime of the

excited state, respectively [III].

3. We have demonstrated that a pair of laser pulses, one with constant and the other with mono-

tonicly modulated carrier frequency establishes a maximum coherence between a ground and

the excited state of a λ-atom. The initially unpopulated ground state is resonantly coupled by

a constant-frequency laser pulse to the excited state, forming an Autler-Townes doublet, while

the other pulse having a frequency sweeping through one-photon and two photon resonance

adiabatically transfers the population from the ground state to that member of the doublet

with which it first becomes resonant with. We have shown that this mechanism, provided that

the resonance condition of the constant-frequency pulse is fulfilled, is extremely robust against

the parameters of the laser pulses such as the Rabi-frequencies or the chirp rate [IV].

4. We have proposed a novel scheme for creating coherent superposition between two magnetic

sublevels of the F = 1 hyperfine ground state of 87Rb atoms. It is based on the interaction of

the atom with a frequency-modulated (chirped) laser pulse having σ+ and a pulse of a constant

carrier-frequency having σ− circular polarization, both far detuned from one-photon resonance

but the chirped pulse sweeping through two-photon resonance. Taking into account all the

possible atomic transitions allowed by the selection rules, we have shown numerically that the

scheme yields a maximum possible degree of coherence of superposed states with negligible

atomic excitation, which eliminates decoherence by spontaneous emission [V].

5. We have demonstrated a matching effect for a pair of frequency-modulated (chirped) Raman-

resonant laser pulses that simultaneously propagate in an optically thick medium of lambda-

structured atoms. That is, the laser pulses become distorted by the interaction with the

medium in such a way that it no longer causes excitation in the atoms, reducing the back-
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SUMMARY

action of the atoms on the pulses and allowing a quasi-lossless propagation. By introducing a

coordinate transformation, we separated a symmetric and an antisymmetric coupled modes of

the lasers and the amplitudes of the atomic states, with the antisymmetric laser mode being

zero at the boundary of the medium. We have shown that due to the excitation of the atoms

at the boundary, the antisymmetric laser mode is generated, changing the population transfer

mechanism in a way that the majority of the population is transferred into the same coherent

superposition of the atomic ground states all throughout the medium. We have also shown

that the composition of this coherent superposition can be controlled by the peak amplitudes

of the laser pulses at the boundary of the medium [VI,VII].
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APPENDIX

Appendix

A.1 Basis transformation

Let us assume that we wish to perform a time-dependent unitary basis-transformation on the system:

ˆV (t) : {|a0〉, |a1〉, . . . |aN〉} → {|b0〉, |b1〉, . . . |bN〉} . (A.15)

Then, as it is well-known from basic linear algebra, the coefficient vector of state |ψ〉 and the coefficient

matrix of an operator, for example the density operator [ρ̂] is transformed as

[ψ]b =
[
V†
]
· [ψ]a , (A.16a)

[ρ]b =
[
V†
]
· [ρ]a · [V ] , (A.16b)

where [.] denotes the coefficient matrix of any vector or operator. However, because of the time

dependence of the transformation operator, the coefficient matrix of the Hamiltonian does not follow

the transformation rule given in Eq. (A.16b). Now we develop the transformation rule for the

Hamiltonian from the Schrödinger and the von Neumann equations.

The Schrödinger equation in the basis {|aj〉 | j ∈ {1, 2, . . . n}} basis reads as

i~∂t [ψ]a = [H]a · [ψ]a , (A.17)

where the coefficient matrix of the Hamiltonian given in the “a” basis is denoted by [H]a. After
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substituting Eq.(A.16a) into Eq. (A.17), we obtain the followings

i~ ([V ] · ∂t [ψ]b + ∂t [V ] · [ψ]b) = [H]a · [V ] [ψ]b
/[
V†
]
·

i~∂t [ψ]b =
([
V†
]
· [H]a · [V ]− i~

[
V†
]
∂t [V ]

)
[ψ]b ,

so the Hamiltonian in the “b” basis reads as

[H]b =
[
V†
]
· [H]a · [V ]− i~

[
V†
]
∂t [V ] . (A.18)

Now let us show that the transformation rules given in Eqs. (A.16b) and (A.18) are consistent with

the von Neumann equation for pure states. The generalization for mixed states is straightforward.

The von Neumann equation given in the “a” basis reads as

i~
∂ [ρ]a
∂t

= [[H]a , [ρ]a] . (A.19)

Substituting Eq. (A.16b) into Eq. (A.19), we get

i~
(
∂t [V ] · [ρ]b

[
V†
]

+ [V ] [ρ]b · ∂t
[
V†
]

+ [V ] (∂t [ρ]b)
[
V†
])

= [H]a [V ] [ρ]b
[
V†
]
− [V ] [ρ]b

[
V†
]

[H]a

i~
∂ [ρ]b
∂t

= −i~

[V†] ∂t [V ] · [ρ]b + [ρ]b · ∂t
[
V†
]

[V ]︸ ︷︷ ︸
−[V†]∂t[V ]

+
[
V†
]

[H]a [V ] · [ρ]b − [ρb] ·
[
V†
]

[H]a [V ]

i~
∂ [ρ]b
∂t

=
[([
V†
]

[H]a [V ]− i~
[
V†
]
∂t [V ]

)
, [ρ]b

]
⇒ [H]b =

[
V†
]

[H]a [V ]− i~
[
V†
]
∂t [V ] ,

(A.20)

which is exactly the same as in Eq. (A.18).

A.1.1 Application: phase transformation on the atomic bare states

Let us consider the basis consisting of the atomic eigenstates {|k〉, k ∈ {1, 2, . . . n}} as the basis “a”,

and we wish to perform the basis transformation given in Eq. (1.20):

V̂ =
N∑
k=1

ei(δkt−kkx)|k〉〈k|+ |0〉〈0|. (A.21)
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Using the transformation rule given in Eq. (A.18), the Hamiltonian in the new basis is the following:

[
Ĥ
]
V

=
[
V̂†
]
·
[
ĤRWA

]
·
[
V̂
]
− i~

[
V†
]
∂t [V ]

= −~


1 0 0 · · ·
0 e−i(δ1−k1x) 0 · · ·
0 0 e−i(δ2−k2x) · · ·
...

...
...

. . .




0 Ω1e−i(δ1−k1x) Ω2e−i(δ2−k2x) · · ·
Ω∗1ei(δ1−k1x) 0 0 · · ·
Ω∗2ei(δ2−k2x) 0 0 · · ·

...
...

...
. . .




1 0 0 · · ·
0 ei(δ1−k1x) 0 · · ·
0 0 ei(δ2−k2x) · · ·
...

...
...

. . .



− i~


1 0 0 · · ·
0 e−i(δ1−k1x) 0 · · ·
0 0 e−i(δ2−k2x) · · ·
...

...
...

. . .




0 0 0 · · ·
0 iδ1ei(δ1−k1x) 0 · · ·
0 0 iδ2ei(δ2−k2x) · · ·
...

...
...

. . .



= −~


0 Ω1 Ω2 · · ·

Ω∗1 −δ1 0 · · ·
Ω∗2 0 −δ2 · · ·
...

...
...

. . .

⇒ ĤV = −~

[
N∑
k=1

−δk|k〉V〈k|V + (Ωk|0〉〈k|V +H.c.)

]
. (A.22)
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