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1. Antecedents and motivations of our work

1.1. Average recovery time in physical systems

The need for scientific theories was demanded by the observation of the
surrounding macroscopic events happening from time to time. Such pe-
riodic events were for example the alternation of days and nights, or
the passage and recurrence of the seasons. The observed regularities
suggest the existence of underlying natural law or laws. Taking Earth’s
circulation and rotation into account is necessary for an explanation of
the presented examples. These arguments were already known in an-
cient cultures as well, who further noticed that with the passing of a
year the Earth does not return to its exact prior position but to one very
close to it. Their notes however concluded that the Earth after all does
return to its initial place and this time elapsed is called “Great Year”
or “Platonic Year”. The then most accurate calculations carried out by
the Babylonians, who identified one year as 360 days(hence the partit-
ion of the total circle into 360 degrees ) while the Great Year is 36,000
years[1, 2, 3].

Newton in his work[4] (published in 1687) seemingly gave a comp-
lete explanation of the movements of all the planets found in the solar
system but the efforts to find a concrete solution for the systems con-
sisting of two bodies remained unsuccessful. The simplest of the unre-
solved problems was the three bodies problem for which by the end of
the 19th century there were some approximate solutions bound to ini-
tial conditions however the existence of an exact solution remained an
open question. Upon the invitation of II. Oscar Swedish king in 1887
Poincaré started to work on this minimal problem however his efforts
were unsuccessful. He concluded that the problem can not be solved in a
close form. His win of the prize was further supported by the other two
positive results he found, 1) He showed that a small change in the initial
conditions, in an unpredicted manner, results in a fairly large change in



the solution to which sensitivity we have to pay attention to in our cal-
culations. (This remark lead to the birth of the chaos-theory.) 2) Beyond
the specific problem he proved that when in a process the certainty equi-
valent of a state is a constant, a system returns to almost every previous
state after a certain time (Poincare time)[7, 8, 9].

On the magnitude and average frequency of returns of the returning
time introduced by him Poincaré made no estimates. For this we had to
wait until 1947, when Kac also proved that if a state is recurrent then
it is indeed infinitely recurring, whilst using the lemma named after
him to determine the average return time of a state. According to Kac
lemma the average return time of a state is equal to the reciprocal of
its equilibrium distribution[10]. I have further discussed the strength
of the lemma in the thesis hence now I will only demonstrate one of its
unusual applications. Compare the frequency of occurrence of 7 and 8
(in the decimal numeral system) in the first digit of the 2" (n € N) series,
as well as the average number of steps until the first digit becomes 7
and then 8 again. All members of the series can be written in the form
of 2" = B-10* where 1 <B < 10 and % € N. Thus if 7 < B < 8 the given
member of the series starts with 7, when 8 < B <9 the first digit of the
first element is 8. Taking the logarithm of the basis of 10 of the previous
form we obtain the following: nlog(2) = £ +1log(B). Hence to get the first
digit of every element take n times log(2) ignoring its integer parts, and
see which two integers’ logarithms it falls between (if the result falls in
the interval of [log(7),log(8)) the first element of the series starts with
7. Considering that 0 < log(B) < 1, multiplying both sides with 27 the
original problem can be replicated to a rotation on a unit circle, where
the unit rotation is defined by the angle that has the size 271og(2). Thus
the equilibrium distribution of the first digit of the elements is deter-
mined by the length of the arc, normalized with 2, on the unit circle,
assigned to them, from which the probability that the first digit of 2n
be 7 is: P7 =1og(8) —log(7) = 0.058, similarly Pg =~1log(9) —1log(8) = 0.051.



From the Kac lemma we know that in average every member with the
first digit of 7 will be followed by another in N7 = 1/0.058 = 17.24 steps,
while in the case of 8 this number is Ng =~ 1/0.051 =~ 19.6. Note that the
prior result (apart from some specific power bases) is universal.

Moving away from the description of macroscopic systems the defi-
nition explaining the dynamics of the system has to be modified. Hence
while in some classical systems the evolution of time can be described
by the iterative use of given transfer matrices, in a closed system of the
quantum world these dynamics are described by a unitary operator’s
iterated use. Furthermore whilst in the classical systems the definition
of the average first return time did not pose any problems, in the quan-
tum world this step can not be performed in a well defined way, since we
have to ensure the avoidance of multiple returns, which requires some
sort of interference. One way to interfere is to monitor continuously, so
we modify the dynamics in the following way: We measure the system
after every step, and if it returned to the ground state, we stop the pro-
cess. The time necessary to stop the process is identified by the return
time of the process, and the return times given by this method will une-
quivocally lead to the first average return time by making a statistical
averaging over them Grinbaum et al. in 2013 found that the average
return time of an arbitrarily chosen state of an arbitrary closed physical
system is an integer or infinite[11].

1.2. Ground state of the SU(N) Heisenberg model

On an adequately low temperature certain degrees of freedom of con-
densate materials freeze out, thus they present distinct structure and
collective properties. For instance until we examine these on a tempe-
rature lower than the energy of the U interaction between its particles
and according to the KgT energy, they can be regarded as crystallized
materials. The electricity flowing in these crystals, with spin- or orb-
ital angular momentum a uniform magnetic behavior can develop, this



certain solid-states (even without an external magnetic field) can ha-
ve an induced magnetic field. These materials are referred to as ferrite
magnets and their corresponding transformation temperature is called
Curie-temperature[12]. The following graphic image can be associated
with the ferromagnets: to every grid of the crystal an elementary mag-
net is assigned, that point in the same direction on every grid, while in
the ferromagnets the elementary magnets point in different directions
and the macroscopic magnetism of the crystal is given by the chang-
ing strength of the elementary magnets[13]. The other large group of
magnetic materials is formed by diamagnets, paramagnets and anti-
ferromagnets, since in these a spontaneous induced magnetic field does
not occur. Diamagnetism create an induced magnetic field in a direction
opposite to an externally applied magnetic field, whilst in paramagnets
the induced field is created in the same direction as the externally app-
lied field. In antiferromagnets the neighboring grids exhibit a magnetic
ordering in opposing directions, however unlike in the ferromagnets he-
re the elementary magnets have the same strength[14, 15, 16].

The whole spin of elementary magnets formed on a grid point of a
solid, can originate from the kernel or the magnetic or orbital angular
momentum of the electrons, as well as due to the surrounding momen-
tums’ shading effect it may also shorten. To model the interaction of the-
se momenta the isotropic Heisenberg-model is appropriate, which takes
into account the Pauli-principle and the direct and kinetic exchange me-
chanisms. The Heisenberg-model describes the interaction of the spins
of the solid-states as a sum of coupled interactions, between which the
J connection is regarded as grid independent. Assuming these pair in-
teractions are unable to induce the atom which carries the spin of the
grid hence we focus on the spin rotating role of each interacting parts
that are sufficient to describe the coupled interactions. According to the
model’s J parameter’s sign, in the crystal a ferromagnetic (J < 0), or an
antiferromagnetic (J > 0) ordering is preferred.



Despite its apparent simplicity, the Heisenberg-model describes the
surrounding physical systems well, in addition apart from some special
cases an exact solution does not exist. When examining the ground-state
of the model we came across a variety of exotic phases, which is mainly
influenced by the lattice that belongs to the model and the size of the
spin of the grids. First, in 1944 L. Onsager proved with his exact cal-
culations that the initial state of an SU(2) Heisenberg-model placed on
a square lattice can also be an ordered phase[17, 18]. Following this,
the examination of the symmetry properties of the ground state of the
SU(N) symmetric Heisenberg-model began[19, 20, 21, 22, 23, 24, 25].
The individual results have shown that in infinitely large systems the
ground state can be arbitrarily close to the Néel-ordering, furthermo-
re the deviation from these orderings increases with the decreasing of
the grid size. Hence by the examination of a finite but sufficiently large
system the initial state (in certain parameter ranges) can be approxima-
ted by a classical Néel-ordering. However when determining the ground
state we have to take the Mermin-Wagner theorem into account, which
states that at a finite temperature there has to be a minimum of two
dimensions for an ordering to be formed in the ground state [26, 27, 28].

2. Summary of results

2.1. The average first return time of open quantum sys-
tems

We were inspired to work on open systems by an article published in
2013 where Grunbaum et al gives a quite technical, topological argu-
ment in this article, that in iterated unitary dynamics, the system re-
turns to its initial state in integer or infinite steps (in average) . We in-
terconnected this problem with a theorem known in classical dynamics,
which states that in doubly stochastic iterated dynamics, the average



return time is equal to the size of the irreducible graph associated with
the initial state. We further generalized our theorem which was named
as the quantum Kac lemma.

With the investigation of open systems, we had the chance to con-
nect purely quantum and purely classical systems, with a continuous d
decoherence parameter, where d = 0 corresponds to a purely quantum
system, while d = 1 results in a purely classical system. The time de-
velopment of a quantum system can generally be given by a quantum
channel. The Kraus representation of this channel presumes a constant
environment through time-development. With the introduction of this
dynamics, we were able to link the two doubly stochastic limits, (i.e., the
doubly stochastic classical dynamics and the unitary dynamics), and to
show that if the dynamics is unital (in both limits), than the average
return time stays quantized and is equal to the dimension of the Hil-
bert space explored by the system We investigated the applicability and
the surprising behaviour of the theorem we got[III]. We displayed the
robustness of the problem by exploring the ‘relevant Hilbert space’ thro-
ugh several examples.

As I dug deeper in this field, I have realised that if a system’s ini-
tial state is an eigenstate of the equilibrium density operator, then the
average returning time can be calculated from the system’s equilibrium
distribution[I]. In the previous special cases this condition is automati-
cally satisfied, since in those cases the equilibrium distribution is the
multiple of the unit operator. According to the found theorem the re-
ciprocal of the number we get by the normalization of the state gives
exactly the average returning time (which is in accordance with the re-
sults we got using for unital dynamics). Our theorem given by these
more general dynamics, at the classical extremes is the same as the
classical Kac theorem. Finally, we showed through an example, that the
found quantum Kac lemma is applicable to find the average hitting ti-
me between arbitrary states in every iterated dynamics driven system,



where we use a classical tool to determine if the walker hits the target
state or not[I].

2.2. SU(4) symmetric anti-ferromagnetic Heisenberg mo-
del on an fcc lattice

I have started to investigate the spin systems in my MSc thesis, and now
I continue do so as a PhD student. In the course of investigating these
systems, I have always aimed to understand the SU(N) spin operators’
different representations and applications. We examined two physically
different model: one being the SU(6) symmetric anti-ferromagnetic Hei-
senberg model on a hexagonal lattice??, and the other being the SU(4)
symmetric antiferromagnetic Heisenberg-model on an fcc lattice[II]. We
used different representations in the two mentioned models, because
we expected different outcomes. We expected an SU(6) symmetric spin-
liquid ground state in the first model, while an ordered phase in the
second one. As the results of our research on the first model has already
been presented in my MSc thesis, I concentrated on the second one in
my doctoral thesis.

We chose the boson representations of the spin operators in the co-
urse of investigating the ordered phase, since in the ground state, they
Bose-condensate, so they violate the SU(4) rotational symmetry. This
representation of spins results in a four operator interaction term which
in general cannot be treated in an exact way, so we used the ‘spin wa-
ve approximation’ to handle this term. In the first step of this appro-
ximation we determined all the possible classical configurations of the
(degenerate) ground state. We found in the course of the calculations,
that this ordering is not unique. For simplicity, we chose a one parame-
ter ensemble (helical states) from these possible states, and tried to find
the model’s ground state on this subspace. To carry out this approxima-
tion, we need the boson operator’s Holstein-Primakoff representation,
where we used the semiclassical series expansion. With the help of the



series expansion, the degeneracy of the classical states splits up, and
only one state remained as the ground state of the system. This type
of the selection is called as the “order-by-disorder” mechanism. We ma-
de a stability analysis of the obtained ground state by calculating the
spin reduction, as a self-consistency condition being satisfied, i.e., in the
semiclassical approximation we put forward as a hypothesis, that the
magnetization on each lattice site has a well defined, classical directi-
on which can only change a little due to perturbations. These quanti-
tative checks showed, that at a finite temperature, the obtained phase
becomes unstable, which can be explained graphically as the Mermin-
Wagner theorem prevents the obtained phase behaving as a quasi 2 di-
mensional system. The higher orders of the approximation were taken
into account as an effective ferromagnetic Heisenberg interaction bet-
ween the next nearest neighbors, and so we calibrated the value of the
coupling accordingly. In the extended model we found that the obtained
ground state stabilized even on a finite temperature.

Finally, we determined the spin-spin correlation function for the he-
lical states (characterized by the 9 parameter) by this quantity the spin
configurations of the state can be identified, with the help of the scatter-
ing experiments.
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