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Quantum optics and quantum informatics
program

Supervisor:
Tamás Kiss, PhD
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Introduction

Walks are elementary processes that consist of a sequence of atomic steps. If

the sequence of steps is random, we call the process random walk. In general,

random walks follow the Liouville equation, thus can be fully described and

understood in terms of classical mechanics. Random walks are basic mathem-

atical tools, used to model a rich variety of physical systems. The path of a

single dye molecule in water (diffusion), the fluctuation of stocks, the spreading

of diseases, and surfing on the internet are amongst the typical examples of

such systems. In computational sciences it was also found beneficial to employ

random walks, e.g. as an approach to describe probabilistic Turing machines.

Quantum walks are quantum mechanical extensions of classical random

walks. As random walks are suitable tools used in statistical physics and

computational sciences, quantum walks found their applications in quantum

physics and quantum information theory. For example, they are suitable mod-

els for describing quantum transport, scattering and topological effects in solid

state materials. In quantum information theory, quantum walks are widely

used to construct quantum algorithms, in particular, search on unstructured

databases. Quantum walks are also universal primitives of quantum compu-

tation: On a quantum computer, the computational process is described by

unitary (reversible) transitions between elements of the state space. One can

consider these elements as vertices of a graph, and the unitary computation

process as a quantum walk on this very graph.

The universality and other promising aspects of quantum walks have caught
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the attention of experimentalists: Quantum walks have been successfully de-

monstrated in optical lattices using single neutral atoms and trapped ions.

These experiments all have a similar approach: the internal state of the atom

is rotated by an electromagnetic field, then the atom is coherently displaced in

the lattice corresponding to its internal state. The repetition of this process

realizes a discrete time quantum walk. A nuclear-magnetic-resonance-based ex-

periment (realizing a quantum information processor consisting of three qubits)

was also reported. Another promising way to realize quantum walks is the

photonic approach: These experiments are quite diverse considering the media

where the photons propagate. In integrated waveguide arrays photons scatter

between parallel waveguides of close proximity; their final position density is

determined by a continuous time quantum walk. These arrangements are very

well suited to study multi-photon (i.e. multi-particle) walks and decoherence,

as well. Experiments are also performed with linear optics mimicking the so-

called optical Galton board, and by the time bin encoding of the position of the

walker. This latter approach is also suitable for studying higher dimensional

walks, multi-particle walks with interaction, and decoherence.

Scientific background

Quantum walks obey unitary evolution by design — they correspond to a de-

terministic, closed-system dynamics. A unitary and homogeneous quantum

walk on a lattice usually exhibits ballistic spreading, which is quadratically

faster in contrast with its classical diffusively spreading counterpart. How-

ever, in nature physical processes are subject to noise, which might disturb
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the unitary evolution of closed quantum systems, essentially leading to an

open-system dynamics. Under such noisy condisitons quantum walks exhibit

a rich variety of behaviors, for example fractional scaling in their spreading,

or Anderson-localization. On the other hand, in some cases noise can enhance

the spreading.

Errors in the underlying graph or lattice are special sources of noise in

walks. For example, hot water (liquid) passing through ground coffee (porous

or granular material) or the robustness of computer networks under attacks or

power outage can be modeled with graphs, where connections are broken with

some probability. This concept is called percolation. Percolation is extensively

studied in relation to classical walks, leading to interesting phenomena, in par-

ticular, phase transitions in higher dimensional lattices. On the other hand,

the question of the effect of percolation on quantum walk models is rather new

and there exists only a few studies in this topic. Most of the known results

are either numerical or phenomenological, due to the “size" of the problem:

A quantum walk spread on a bigger graph means a bigger territory for per-

colation, and the number of actual percolation graphs (configurations) grows

exponentially with the size of the graph. Thus, even purely numerical results

are hard to obtain due to the required computational power.

In physics, entropy is the most well-known measure of information con-

tent. However, the definition of entropy is very special, since it is the average

asymptotic information content per sample for an independent and identically

distributed sequence of random variables, thus, for a stochastic process. Even

for simple stochastic processes, e.g. Markov chains, which, in fact, can be

3



interpreted as classical walks on weighted, directed graphs, entropy is not a

suitable measure for the asymptotic per sample information content. In in-

formation theory, however, there exists a generalization, which is a suitable

measure for general stochastic processes: the entropy rate. It is a rather in-

teresting (and open) question whether for a quantum mechanical system the

(classical) concept of entropy rate is applicable.

Motivations and goals

In our research we focused on the discrete time quantum walk, which is a

non-trivial extension of the classical random walk. Here, the non-triviality

is given by the introduction of the so-called coin space, an internal Hilbert

space, by which the scalarity of classical random walks is lost. This particular

model is a universal quantum computational primitive, and is also the most

well-known definition of quantum walks. The time evolution of such walks

effectively mimics classical discrete time walks, i.e. is given by the repeated

application of a coin toss and a step operation. Albeit being very simple, this

model is frequently used in theoretical physics to study transport, topological

phases, multiparticle systems, and quantum algorithms. Early experiments

were mostly directed to study the basic properties of discrete time quantum

walks, whereas state-of-the-art experiments are aimed to explore and exploit

quantum walks in a more general setting. In summary, the simple but universal

definition of the model and the increasing number of experimental realizations

motivated us to study this system.
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The question considering the behavior of quantum walks on percolation

graphs is rather new and still open. As the computational cost of the problem

is exponential with respect to the size of the underlying graph, any brute force

numerical simulations are doomed to fail. Analytical results on this topic were

mostly phenomenological so far. We first aimed to perform efficient numerical

simulations to aid the analytical studies. Our next goal was to develop analyt-

ical methods which allow for solving the general problem. Our final goal was

to deploy the developed methods in order to learn about the physics of some

particularly interesting quantum walks on percolation graphs.

Entropy rate is an interesting concept generalizing entropy for stochastic

processes. As classical walks are the textbook examples of Markov chains, on

which entropy rate is a meaningful definition, it is a rather interesting question

whether the concept of entropy rate is applicable in the case of quantum walks

(which are quantum Markov chains). A further interesting fact is that unitary

quantum processes can be disturbed by measurements. It is known that fre-

quent measurements on a quantum system can result in interesting phenomena,

e.g. the quantum Zeno effect. We aimed at answering the following questions:

What happens with a periodically measured quantum walk? If one has access

to the measurement data only, is it possible to say something regarding the

quantumness of the system? Does the classical concept of entropy rate reflect

the non-classicality of a frequently measured quantum system?

5



Applied methods

In the first model we studied, the transport process (step) of the walk was

disturbed by some noise corresponding to classical randomness. We described

this noise as a change in the connectivity of the underlying graph given by

dynamical percolation. To study this problem, we employed the asymptotic

theory of random unitary operations. As a by-product we proposed an ansatz

based on pure eigenstates, in order to get a better physical insight. To check

our analytical results, we have also performed numerical studies. As the com-

putational cost of the problem is exponential with respect to the size of the

underlying lattice, we took advantage of the nearest neighbour interactions of

the model to develop a more efficient algorithm, which ultimately resulted in

a polynomial scaling.

For our studies considering the entropy rate of quantum walks, we employed

the tools of classical information theory. To give a reference we determined the

entropy rate of some periodically measured classical walks. Then, we numer-

ically checked whether the concept of entropy rate is applicable for quantum

systems as well. These checks were performed using two different approaches:

First, by calculating the “partial entropy rate” up to a finite number of steps and

by predicting its convergence. Next, we employed Monte Carlo simulations to

predict the convergence. As entropy rate is an asymptotic quantity, we needed

to perform an elaborate analysis in order to solve the problem formally. For

this analysis we used the homogeneity of the system. We also employed the

hidden Markov model to give an upper bound approximation for the entropy

6



rate. We used the so-called weak limit (i.e. an asymptotic rescaled position

distribution) of the model to determine the scaling of the entropy rate in the

rare measurement limit. To compare different possible approaches known form

the literature, we calculated the entropy rate considering other definitions and

measurement processes.
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New scientific results
1. I have developed a general method for solving the asymptotics of dis-

crete time quantum walks on percolation graphs. This general method

is based on the attractor-space formalism of the asymptotic method of

random unitary operations, which I separated into two parts by making

a difference between the coin toss and position step. I have shown that

the separation process allows for solving the problem for whole families

of graphs and coins. I have also shown that the superoperator describ-

ing the dynamics of the percolation quantum walk can be constructed

polynomially on regular graphs with respect to the number of sites [I].

2. I presented a method for determining the asymptotic attractors of ran-

dom unitary operations. The core of this method is to find the common

eigenstates of the dynamics, which can be used to form attractors with

a direct physical meaning. I have shown that these common eigenstates

span a decoherence-free subspace. I have also shown that in some cases

the complete attractor space can be determined via common eigenstates

and the trivial attractor (corresponding to the completely mixed state).

I determined the formula of the asymptotic time evolution in this case,

which is given as an incoherent mixture of the unitary dynamics on the

decoherence-free subspace spanned by common eigenstates and the com-

pletely mixed state on its orthogonal complement. I have also illustrated

the method on discrete time quantum walks on dynamical percolation

graphs and pointed out the important differences with respect to the

general method [II].
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3. I have explicitly solved the asymptotic dynamics of one-dimensional per-

colation quantum walks by employing the methods I developed. I have

given the attractor space in a closed form for the percolation cycle and

linear graph for the complete SU(2) problem. I have shown that there

are non-trivial asymptotics: stationary states with quantum coherences

and limit cycles can appear. I have analyzed the physical form of the

solutions and discovered that on the linear graph the solutions are edge

states for most of the coin operators [III].

4. I have explicitly solved the asymptotic dynamics of the two-dimensional

Hadamard and Grover walks on the percolation torus and carpet. I have

shown that in contrast to its one-dimensional counterpart, the Hadamard

walk exhibits asymptotic position inhomogeneity. I have also discovered

that the percolation model in certain cases is sensitive to rotation, in

contrast with the corresponding undisturbed (unitary) quantum walk. I

have found that the common eigenstates of the Grover walk have finite

support, thus the walk keeps its trapping property in the percolation case

[II].

5. I have defined a stochastic process based on the periodically measured

quantum and classical walks. I have given a general method for cal-

culating the classical entropy rate of these stochastic processes. I have

shown that the frequently measured quantum walk behaves as a classical

Markov chain in the position-coin state basis, and the entropy rate of

this Markov chain is equal to the entropy rate of the previously defined
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stochastic process. I have also given a method for calculating the lower

and upper bounds of this entropy rate. I have found that in the regime

of frequent measurements, the entropy rate of the quantum-walk-based

model is usually lower, due to the memory effect of the coin state of the

particle [IV].

6. I have developed an approximation protocol to give an upper bound to the

exact entropy rate of the periodically measured quantum walks. I have

estimated the scaling of the entropy rate of the one-dimensional Hadam-

ard walk with respect to the time (number of discrete steps) between

measurements using the so-called weak limit theorem. I have found that

for rare measurements the entropy rate is dominated by the ballistic

spreading of the quantum walk, thus the entropy rate is higher than in

the classical case. I have also studied finite systems and discovered that

collapses and revivals can occur in the quantum walk based system. I

have also calculated the “most quantum case" and the quantum entropy

rate of the model to give a comparison. I found that both of these models

are inconclusive for periodically measured walks. On the other hand, the

classical-entropy-rate approach I proposed is a suitable tool to capture

some of the quantum features of the system [IV].

10



List of publications

Related publications

[I] B. Kollár, T. Kiss, J. Novotný, I. Jex, Asymptotic Dynamics of Coined

Quantum Walks on Percolation Graphs, Phys. Rev. Lett. 108, 230505

(2012)

[II] B. Kollár, J. Novotný, T. Kiss, I. Jex, Percolation induced effects in two-

dimensional coined quantum walks: analytic asymptotic solutions, New

J. Phys. 16, 023002 (2014)

[III] B. Kollár, J. Novotný, T. Kiss, I. Jex, Discrete time quantum walks on

percolation graphs, Eur. Phys. J. Plus 129, 103 (2014)

[IV] B. Kollár, M. Koniorczyk, Entropy rate of message sources driven by

quantum walks, Phys. Rev. A 89, 022338 (2014)

Other publications

[V] B. Kollár, M. Štefaňák, T. Kiss, I. Jex, Recurrences in three-state quan-

tum walks on a plane, Phys. Rev. A 82, 012303 (2010)

[VI] M. Štefaňák, B. Kollár, T. Kiss, I. Jex, Full revivals in 2D quantum walks,

Phys. Scr. T140, 014035 (2010)

[VII] M. Štefaňák, S. M. Barnett, B. Kollár, T. Kiss, I. Jex, Directional cor-

relations in quantum walks with two particles, New J. Phys. 13, 033029

(2011)


	Introduction
	Scientific background
	Motivations and goals
	Applied methods
	New scientific results
	List of publications

